Welcome to the 334 issue of the Eletter, available electronically here.
To submit new articles, go “Article Submissions” on the Eletter website
To unsubscribe, please send an email with the subject line “Eletter Unsubscribe”.

The next Eletter will be mailed out at the beginning of August 2016.

Contents

1. IEEE CSS Headlines
 1.1 IEEE Control Systems Society Publications Content Digest
 1.2 IEEE Transactions on Automatic Control
 1.3 IEEE Transactions on Control Systems Technology
 1.4 IEEE Control Systems Society Technically Cosponsored Conferences

2. Summer Schools
 2.1 Summer School: Advanced Algorithms for Traffic Prediction and Control
 2.2 Symposium & Summer School: Smart Systems for Water Management
 2.3 Summer School: Elgersburg School on Mathematical Systems Theory

3. MISC
 3.1 DIDO 7.5: MATLAB Optimal Control Toolbox
 3.2 Siconos 4.0.0: Software for Nonsmooth Dynamical Systems
 3.3 European Research and Innovation Agenda on Cyber-physical Systems of Systems

4. Journals
 4.1 Contents: Automatica
 4.2 Contents: International Journal of Control
 4.3 Contents: Nonlinear Studies
 4.4 Contents: Mathematics in Engineering, Science and Aerospace
 4.5 Contents: Control Theory and Technology
 4.6 Contents: Mathematics of Control, Signals, and Systems
 4.7 Contents: Control Engineering Practice
 4.8 Contents: International Journal of Applied Mathematics and Computer Science
 4.10 Contents: Asian Journal of Control
 4.11 Contents: Proceedings of the Institute of Applied Mathematics
 4.12 CFP: International Journal of Intelligent Robotics and Applications
 4.13 CFP: IEEE Transactions on Intelligent Transportation Systems
 4.14 CFP: International Journal of Control, Automation, and Systems
5. Conferences
5.1 Annual Allerton Conference on Communication, Control, and Computing
5.2 IFAC Symposium on Nonlinear Control Systems
5.3 International Symposium on Distributed Autonomous Robotic Systems
5.4 ACM Workshop on Cyber-Physical Systems Security & Privacy
5.5 World Congress: Mathematical Problems in Engineering, Aerospace and Sciences
5.6 International Conference on Control, Automation and Systems
5.7 CFP: Cross-Disciplinary Challenges for Autonomous Systems

6. Positions
6.1 PhD: University of Groningen, Netherlands
6.2 PhD: Chalmers University of Technology, Sweden
6.3 PhD: Lehigh University, USA
6.4 PhD: University of Oldenburg, Germany
6.5 PhD: University of Rhode Island, USA
6.6 PhD: University of Idaho, USA
6.7 PhD: University of the Armed Forces, Germany
6.8 PostDoc: University of Cape Town, South Africa
6.9 PostDoc: Huazhong University of Science & Technology, China
6.10 PostDoc: Ohio State University, USA
6.11 PostDoc: Texas A&M University at Qatar, Qatar
6.12 PostDoc: Virginia Tech, USA
6.13 PostDoc: CReSTIC, France
6.14 PostDoc: Lehigh University, USA
6.15 PostDoc: University of Oxford, UK
6.16 PostDoc: UT-Dallas, USA
6.17 PostDoc: KTH, Sweden
6.18 PostDoc: Universitat Politecnica de Valencia, Spain
6.19 Faculty: Wallenberg Autonomous Systems Program, Sweden
6.20 Faculty: University of Groningen, Netherlands
6.21 Faculty: Norwegian University of Science and Technology, Norway
1. IEEE CSS Headlines

1.1. IEEE Control Systems Society Publications Content Digest

Contributed by: Elizabeth Kovacs, ekovacs2@nd.edu

Each issue offers readers a rapid means to survey and access the latest peer-reviewed papers of the IEEE Control Systems Society. We also include links to the Society’s sponsored Conferences to give readers a preview of upcoming meetings.

1.2. IEEE Transactions on Automatic Control

Contributed by: Elizabeth Kovacs, ekovacs2@nd.edu

Table of Contents

IEEE Transactions on Automatic Control
Volume 60 (2016), Issue 7 (July)

Please note that the contents of the IEEE Transactions on Automatic Control, together with links to the abstracts of the papers may be found at the TAC web site: http://www.nd.edu/ieeetac/contents.html

- Scanning-the-Issue p. 1709

Papers

- A Randomized Linear Algorithm for Clock Synchronization in Multi-Agent Systems, S. Bolognani, R. Carli, E. Lovisari, S. Zampieri p. 1711
- Robust Distributed Averaging: When are Potential-Theoretic Strategies Optimal?, A. Khanafer, T. Basar p. 1767
- A Common Model for the Approximate Analysis of Tandem Queueing Systems with Blocking, L. Li, Y. Qian, Y. Yang, K. Du p. 1780
- Simultaneous Identification and Stabilization of Nonlinearly Parameterized Discrete-Time Systems by Nonlinear Least Squares Algorithm, C. Li, Michael Z. Q. Chen p. 1810
- Combined Flocking and Distance-Based Shape Control of Multi-Agent Formations, M. Deghat, B. D.O. Anderson, Z. Lin p. 1824
- Learning a Nonlinear Controller from Data: Theory, Computation and Experimental Results, L. Fagiano, C. Novara p. 1854
- An Equalization Approach to Feedback Stabilization Over Fading Channels, G. Gu p. 1869
- Crowd-Averse Robust Mean-Field Games: Approximation via State Space Extension, D. Bauso, T. Mylvaganam, A. Astolfi p. 1882

Technical Notes and Correspondence

- Equivalence of MIMO Circle Criterion to Existence of Quadratic Lyapunov Function, M. Lipkovich, A. Fradkov p. 1895
- Distributional Robustness Analysis for Nonlinear Uncertainty Structures, C. Feng, C. M. Lagoa p. 1900
- The Mean-square Stability Probability of H-infinity Control of Markovian Jump Systems, J. Zhu, X. Yu, T. Zhang, Z. Cao, Y. Yang, Y. Yi p. 1918
- Switching Rule Design for Affine Switched Systems with Guaranteed Cost and Uncertain Equilibrium Condition, G. d. A. Senger, A. Trofino p. 1925
- The Extended Conic Sector Theorem, L. J. Bridgeman, J. R. Forbes p. 1931
- Hierarchical Decomposition Based Consensus Tracking for Uncertain Interconnected Systems via Distributed Adaptive Output Feedback Control, W. Wang, C. Wen, J. Huang, Z. Li p. 1938
- An Integral-Type Multiple Lyapunov Functions Approach for Switched Nonlinear Systems, L. Long, J. Zhao p. 1979
- Necessary Stability Conditions for Delay Systems with Multiple Pointwise and Distributed Delays, S. Mondié, C. Cuvas p. 1987
- Model Reduction by Matching the Steady-State Response of Explicit Signal Generators, G. Scarciotti, A. Astolfi p. 1995

Back to the contents
1.3. IEEE Transactions on Control Systems Technology
Contributed by: Thomas Parisini, eic-ieee@units.it

Table of Contents
IEEE Transactions on Control Systems Technology
Volume 24 (2016), Issue 4 (July)

Regular papers

- Distributed Sliding Mode Control of pH in Tubular Photobioreactors, G. A. de Andrade, D. J. Pagano, J. L. Guzmán, M. Berenguel, I. Fernández, and F. G. Acién, page 1160
- Range and Motion Estimation of a Monocular Camera Using Static and Moving Objects, D. Chwa, A. P. Dani, and W. E. Dixon, page 1174
- Sensor Fault Detection, Isolation, and Identification Using Multiple-Model-Based Hybrid Kalman Filter for Gas Turbine Engines, B. Pourbabaee, N. Meskin, and K. Khorasani, page 1184
- Flatness-Based Torque Control of Saturated Surface-Mounted Permanent Magnet Synchronous Machines, D. Faustner, W. Kemmetmüller, and A. Kugi, page 1201
- System Identification and Robust Control of Multi-Input Multi-Output Active Magnetic Bearing Systems, A. Noshadi, J. Shi, W. S. Lee, P. Shi, and A. Kalam, page 1227
- Stability Margin Improvement of Vehicular Platoon Considering Undirected Topology and Asymmetric Control, Y. Zheng, S. E. Li, K. Li, and L.-Y. Wang, page 1253
- Simplex Guided Extremum Seeking Control With Convergence Detection to Improve Global Performance, Y. Zhang, M. Rotea, and N. Gans, page 1266
- High-Precision Low-Power Wireless Nodes’ Synchronization via Decentralized Control, A. Leva, F. Terraneo, L. Rinaldi, A. V. Papadopoulos, and M. Maggio, page 1279
- Model-Free Unified Tracking and Regulation Visual Servoing of Wheeled Mobile Robots, B. Li, Y. Fang, G. Hu, and X. Zhang, page 1328
- Friction Compensation Control for Power Steering, F. Wilhelm, T. Tamura, R. Fuchs, and P. Müllhaupt, page 1354
- Adaptive EKF-Based Vehicle State Estimation With Online Assessment of Local Observability, A. Kattriniok and D. Abel, page 1368
- Fixed-Structure Feedforward Control Law for Minimum-and Nonminimum-Phase LTI SISO Systems, M. M. Michalek, page 1382
- Tracking Control for Optical Manipulation With Adaptation of Trapping Stiffness, X. Li and C. C. Cheah, page 1432
- Experimental Aerodynamic Control of a Long-Span Suspension Bridge Section Using Leading- and Trailing-Edge Control Surfaces, K. Gouder, X. Zhao, D. J. N. Limebeer, and J. M. R. Graham, page 1441

Brief papers

- Adaptive Robust Finite-Time Trajectory Tracking Control of Fully Actuated Marine Surface Vehicles, N. Wang, C. Qian, J.-C. Sun, and Y.-C. Liu, page 1454
- Control of Gear Transmission Servo Systems With Asymmetric Deadzone Nonlinearity, Z. Zuo, X. Ju, and Z. Ding, page 1472
- Data-Driven Process Monitoring Based on Modified Orthogonal Projections to Latent Structures, S. Yin, G. Wang, and H. Gao, page 1480
- Collaborative Control of Multivehicle Systems in Diverse Motion Patterns, H.-T. Zhang, Z. Chen, and M.-C. Fan, page 1488
- On Spatial Iterative Learning Control via 2-D Convolution: Stability Analysis and Computational Efficiency, D. J. Hoelzle and K. L. Barton, page 1504
- Design and Human-in-the-Loop Testing of Reduced-Modification Input Shapers, J. J. Potter and W. E. Singhose, page 1513
- Control and Optimization of N-Port DC-DC Converters, A. Maina Ari, L. Li, and O. Wasylczuk, page 1521

1.4. IEEE Control Systems Society Technically Cosponsored Conferences

Contributed by: Luca Zaccarian, CSS AE Conferences, zaccarian@laas.fr

The following conferences have been recently included in the list of events technically cosponsored by the IEEE Control Systems Society:

2. Summer Schools

Contributed by: Antoneta Iuliana BRATCU, antoneta.bratcu@gipsa-lab.fr

Summer School on “Advanced algorithms for traffic prediction and control”
Location and Date: Grenoble (France) - September 12 to 16, 2016
Organizers: Carlos CANUDAS DE WIT (GIPSA-Lab - Grenoble)
Website: http://www.gipsa-lab.fr/summerschool/auto2016/

This Summer School aims at presenting the main mathematical tools which allow modelling, predicting and controlling the traffic, starting with the classical ones to the most advanced ones, including optimal routing and cooperative ITS. The school will consist of a series of surveys, lectures and research talks taught in English, completed by a full day dedicated to industrial presentations and demonstrations of operational tools, among which the Grenoble Traffic Lab (GTL).

The Summer School is mainly intended to PhD students, researchers and scholars in control and traffic engineering, and applied mathematics, being meanwhile open to industrial participants.

Speakers:
- Carlos Canudas-de-Wit (CNRS-GIPSA-lab, Grenoble, France)
- Roberto Horowitz (University of California at Berkeley, USA)
- Alain Kibangou (GIPSA-lab, Grenoble, France)
- Lyudmila Mihaylova (University of Sheffield, U.K.)
- Markos Papageorgiou (University of Crete, Greece)
- Samitha SAMARANAYAKE (Cornell University, USA)
- Martin Treiber (Technische Universität Dresden, Germany)
- Henk Wymeersh (Chalmers University of Technology, Sweden)

Speakers from industry:
- Thomas BAUDEL (IBM, Paris, France)
- Denis JACQUET (Karrus, Grenoble, France)
- Joan ROCA, Aurore REMY (Aimsun, Paris, France)

Early registrations are encouraged. The number of participants is limited to 50.

Registration deadline is July 10th 2016.

For further information, please contact Antoneta Iuliana BRATCU (antoneta.bratcu@gipsa-lab.fr)
2.2. Symposium & Summer School: Smart Systems for Water Management
Contributed by: Andrea Emilio Rizzoli, andrea@idsia.ch

Symposium and Summer School on Smart Systems for Water Management
Modelling, Simulation, Analytics and ICT for Behavioural Change
Monte Verità, Ascona, Switzerland - 22/25 August 2016
The change in climatic variability and conditions, the increase in world population, and the concentration of such world population in urban areas are increasing the stress imposed on water resources. By 2030 there will be 41 megacities worldwide, which will raise domestic water demand, posing big challenges to water supply. For instance, in London by 2020 a shortfall of 133 million litres per day is expected, if nothing is done on the management side with respect to the current practices.
This Symposium and Summer School aims at exploring the perspective of urban water demand management for the next years.
Several topics are going to be addressed, with a particular attention on modelling and understanding the behaviour of water consumers, the drivers of such behaviour, the role of social norms, economic leverages and water demand management strategies to promote behavioural change, and the role of Information and Communication Technologies to support the design, implementation and deliver smart solutions for urban water demand management.
For more information and registration contact Andrea E. Rizzoli (andrea@idsia.ch) and visit http://www.smarth2o.ch/smartwater

2.3. Summer School: Elgersburg School on Mathematical Systems Theory
Contributed by: Fabian Wirth, fabian.wirth@uni-passau.de

Summer School: 9th Elgersburg School on Mathematical Systems Theory
9th Elgersburg School on Mathematical Systems Theory
“Control Theory of Digitally Networked Dynamical Systems” and “Optimal Control Techniques”
Location and Date: Elgersburg, Thuringia (Germany), March 26 - April 1, 2017
Organizers:
Achim Ilchmann (TU Ilmenau, Timo Reis (U Hamburg), Fabian Wirth (U Passau)
Website: https://www.tu-ilmenau.de/de/math/forschung/tagungen/elgersburg-schools/elgersburg-school-2017/
Invitation: The organizers have the pleasure to announce the 9th Elgersburg School.
The topics and lecturers are:
“Control Theory of Digitally Networked Dynamical Systems”
Professor Jan Lunze
Universität Bochum, Germany
https://www.ei.rub.de/fakultaet/professuren/lunze/
“Optimal Control Techniques”
Professor Matthias Gerds
t Universität der Bundeswehr München, Germany
https://www.unibw.de/lrt1/gerdts/mitarbeiter/prof.-gerdts
All participants will attend both courses. Each day, there will be 90 minutes of lecture on both courses. Each morning, example sheets to be worked on in the afternoon, and example classes in the evening. See the website for the complete programme.
Registration
The school is addressed to postgraduate students and postdocs in control, either in mathematics or engineering, very good graduate students are also welcome. We would be grateful if you could pass on this information to any potential candidates.

The location has a capacity for 40 participants. Early registrations are encouraged.

The cost for the hotel including full board per person is: EUR 510,- for a single and EUR 410,- for a double room.

Due to the limited number of places there will be an application procedure for participation at the school. Applicants are asked to provide their CV and a letter of reference from their supervisor. The deadline for applications is November 30, 2016. The organizers will then rank the applications according to excellence and suitability. A list of all participants will be available on the web site by January 15, 2017.

Additionally, there are stipends for travel support, accommodation and subsistence for 10 participants.

For further information, please refer to the website or send an email to one of the organizers.

3. MISC

3.1. DIDO 7.5: MATLAB Optimal Control Toolbox
Contributed by: Matt Wercenski, matt@elissarglobal.com

DIDO - MATLAB Optimal Control Toolbox, 7.5 released.
DIDO solves generic nonlinear optimal control problems:
- Nonlinear dynamics
- Nonlinear control constraints
- Nonlinear path constraints
- Nonlinear cost functions

A guess is not required to start the solution. DIDO is guess-free; however, if a guess is supplied by the user, DIDO will use it. DIDO automatically provides the Hamiltonian and costate trajectories for the analysis of optimality of the candidate solution.

* DIDO can provide solutions within a few seconds (for simple problems) to within a few minutes (for more advanced problems).
* The DIDO 7.5 optimal control tool box includes The DIDO Doctor Toolkit, a diagnostic tool for checking the problem formulation.
* Academic discounts are available. Check out http://www.elissarglobal.com.
* Free version of DIDO is available as DIDOLite from http://www.elissarglobal.com/academic/get-dido/try-dido/.
* For more information about DIDO and optimal control solutions, please visit www.elissarglobal.com

3.2. Siconos 4.0.0: Software for Nonsmooth Dynamical Systems
Contributed by: Vincent Acary, vincent.acary@inria.fr

A brand new Siconos 4.0.0 is out !! Siconos is now distributed under Apache 2.0 license.

What is Siconos ?
Siconos is an open-source scientific software primarily targeted at modeling, controlling, simulating nonsmooth dynamical systems in C++ and in Python:
+ Sliding mode control systems.
+ Mechanical systems (rigid or solid) with unilateral contact and Coulomb friction and impact (nonsmooth mechanics, contact dynamics, multibody systems dynamics or granular materials).
+ Switched Electrical Circuit such as electrical circuits with ideal and piecewise linear components: power converter, rectifier, Phase-Locked Loop (PLL) or Analog-to-Digital converter.
+ Biology (Gene regulatory network).

Other applications are found in Systems and Control (hybrid systems, differential inclusions, optimal control with state constraints), Optimization (Complementarity systems and Variational inequalities), Fluid Mechanics, and Computer Graphics.

The source code (zip and tar.gz) can be found on github: https://github.com/siconos/siconos/releases. We are now working on the release candidate 4.1.0 that can be forked from our github repo master branch. Binary packages forlinuxes are coming soon. We have also improved our documentation at http://siconos.gforge.inria.fr even if it still lacks some polish. As usual, your feedback comments are welcome.

We have also started to feed our YouTube channel, https://www.youtube.com/channel/UCgv2siTCJe5dWFPTDk7Iyw

So, if you have any nice applications made with Siconos, please do not hesitate to contribute. We are interested in showcasing Siconos at work!

Vincent A. for the Siconos team

3.3. European Research and Innovation Agenda on Cyber-physical Systems of Systems
Contributed by: Christian Sonntag, christian.sonntag@bci.tu-dortmund.de

European Research and Innovation Agenda on Cyber-physical Systems of Systems (CPSoS) available
Cyber-physical Systems of Systems (CPSoS) are large complex systems where physical elements interact with and are controlled by a large number of distributed and networked computing elements and human users. Examples are railway systems, air traffic, future road traffic, logistic networks, the electric grid, industrial production sites, and smart buildings. These systems are subject to increasingly stringent demands on the reduction of emissions, efficient use of resources, high service and product quality levels, and low cost and competitiveness on the world market.

The European support action CPSoS (Towards a European Roadmap on Research and Innovation in Engineering and Management of Cyber-physical Systems of Systems), www.cpsos.eu, has released a “Proposal of a European Research and Innovation Agenda on Cyber-physical Systems of Systems – 2016-2025” that describes research and innovation challenges and medium-term research and innovation priorities for the engineering and management of cyber-physical systems of systems which were identified by the project consortium in cooperation with more than 100 external industrial and academic experts.

The CPSoS project has identified three core long-term research challenges that must be addressed in an interdisciplinary manner and in collaboration of tool and solution providers, end-users, and research institutions:
- Distributed, reliable and efficient management of cyber-physical systems of systems
- Engineering support for the design-operation continuum of cyber-physical systems of systems
- Towards cognitive cyber-physical systems of systems

In addition, the project has defined 11 medium-term research and innovation priorities that should receive attention and funding in the next 5 years to advance towards meeting the core challenges:
- System Integration and Reconfiguration
- Resiliency in Large Systems
- Distributed Robust System-wide Optimization
- Data-based System Operation
- Predictive Maintenance for Improved Asset Management
- Overcoming the Modeling Bottleneck
- Humans in the Loop
- Integration of Control, Scheduling, Planning, and Demand-side Response in Industrial Production Systems
- New ICT Infrastructures for Adaptable, Resilient, and Reconfigurable Manufacturing Processes
- Multi-disciplinary, Multi-objective Optimization of Operations in Complex, Dynamic, 24/7 Systems
- Safe, Secure and Trusted Autonomous Operations in Transportation and Logistics

To provide practical context for the core challenges and medium-term priorities, the agenda summarizes the current state in a variety of technology sectors in which cyber-physical systems of systems play a key role, including transportation (automotive, rail, aerospace, maritime), logistics, the process and manufacturing industries, the energy sector, and smart buildings. For all of these sectors, current needs and major challenges are described and related to the engineering and management of CPSoS.

Download the research and innovation agenda proposal here: www.cpsos.eu/roadmap.

4. Journals

4.1. Contents: Automatica

Contributed by: Elisa Capello, automatica@polito.it

Table of Contents
Automatica
Vol. 69, July 2016
http://www.sciencedirect.com/science/journal/00051098/69

- Zhongjing Ma, Suli Zou, Long Ran, Xingyu Shi, Ian A. Hiskens, “Efficient decentralized coordination of large-scale plug-in electric vehicle charging”, pages 35-47.
- Qing-Wen Wang, Abdur Rehman, Zhuo-Heng He, Yang Zhang, “Constraint generalized Sylvester matrix equations”, pages 60-64.
- Yue-E Wang, Xi-Ming Sun, Frédéric Mazenc, “Stability of switched nonlinear systems with delay and disturbance”, pages 78-86.
- He Cai, Jie Huang, “Leader-following attitude consensus of multiple rigid body systems by attitude feedback control”, pages 87-92.
- Wuquan Li, Lu Liu, Gang Feng, “Distributed containment tracking of multiple stochastic nonlinear systems”, pages 214-221.
- Michael Ouimet, Jorge Cortés, “Robust coordinated rendezvous of depth-actuated drifters in ocean internal waves”, pages 265-274.
- Jiangshuai Huang, Changyun Wen, Wei Wang, Yong-Duan Song, “Design of adaptive finite-time controllers for nonlinear uncertain systems based on given transient specifications”, pages 395-404.
- Ming-Feng Ge, Zhi-Hong Guan, Bin Hu, Ding-Xin He, Rui-Quan Liao, “Distributed controller-estimator for target tracking of networked robotic systems under sampled interaction”, pages 410-417.

4.2. Contents: International Journal of Control
Contributed by: Bing Chu, b.chu@soton.ac.uk

International Journal of Control
Volume 89, Issue 7, 2016
http://www.tandfonline.com/toc/tcon20/current

Back to the contents
- Stability analysis of a general family of nonlinear positive discrete time-delay systems, P. T. Nam, V. N. Phat, P. N. Pathirama & H. Trinh, pages 1303-1315
- Consideration of plant behaviour in optimal servo-compensator design, W. H. Moase & C. Manzie, pages 1316-1331
- Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems, Xue-Jun Xie, Xing-Hui Zhang & Kemei Zhang, pages 1332-1341
- Visual servo walking control for humanoids with finite-time convergence and smooth robot velocities, Josafat Delfin, Hector M. Becerra & Gustavo Arechavaleta, pages 1342-1358
- Arbitrary pole placement with the extended Kautsky-Nichols-van Dooren parametric form, Robert Schmid, Lorenzo Ntogramatzidis & Thang Nguyen, pages 1359-1366
- Robust mean filed games for coupled Markov jump linear systems, Jun Moon & Tamer Basar, pages 1367-1381
- Hermite approximation of a hyperbolic Fokker-Planck optimality system to control a piecewise-deterministic process, Masoumeh Mohammadi & Alfio Borzi, pages 1382-1395
- Global asymptotic stabilisation in probability of nonlinear stochastic systems via passivity, Patrick Florchinger, pages 1406-1415
- Integral-based event triggering controller design for stochastic LTI systems via convex optimisation, S. H. Mousavi & H. J. Marquez, pages 1416-1427
- Adaptive neural control for an uncertain robotic manipulator with joint space constraints, Zhong-Liang Tang, Shuzhi Sam Ge, Keng Peng Tee & Wei He, pages 1428-1446
- Truncated adaptation design for decentralised neural dynamic surface control of interconnected nonlinear systems under input saturation, Shigen Gao, Hairong Dong, Shihang Lyu & Bin Ning, pages 1447-1466
- Smart procurement of naturally generated energy (SPONGE) for PHEVs, Yingqi Gu, Florian Häusler, Wynita Griggs, Emanuele Crisostomi & Robert Shorten, pages 1467-1480
- On the computation of the fundamental subspaces for descriptor systems, Christina Kazantzidou & Lorenzo Ntogramatzidis, pages 1481-1494
- Ensemble control of linear systems with parameter uncertainties, Kit Ian Kou, Yang Liu, Dandan Zhang & Yanshuai Tu, pages 1495-1508
- Null controllable region of delta operator systems subject to actuator saturation, Hongjiu Yang, Ce Yan, Yuanqing Xia & Jinhui Zhang, pages 1509-1521

4.3. Contents: Nonlinear Studies

Contributed by: Seenith Sivasundaram, seenithi@gmail.com

Nonlinear Studies
Vol 23, No 2 (2016)

Table of Contents

Articles
- Global asymptotic stability of nonlinear neutral differential equations with variable delays, Abdelouaheb Ardjouni, Ahcene Djoudi, 157-166
- Stability and bifurcation analysis of an eco-epidemiological model with multiple delays, Kakali Ghosh,
Sudip Samanta, Santanu Biswas, Sourav Rana, Ibrahim M. ELmojtaba, Dipak Kumar Kesh, Joydev Chattopadhayay, 167-208
- Existence of mild solution for fractional nonlocal neutral impulsive integro-differential equations with state-dependent delay, R Poongodi, R Murugesu, 209-223
- On q-analogues of Mangontarum transform of some polynomials and certain class of H-functions, S.K.Q. Al-Omari, 225-236
- Growth of Solutions of Complex Differential Equations With Coefficients Being Lacunary Series of Finite Iterated Order, Amina Ferraoun, Benharrat Belaidi, 237-252
- Existence of Weak Solutions for a Class of Parabolic Problems in Weighted Sobolev Space, Khaled Ben Ali, Abdeljabbar Ghanmi, 253-261
- Ball convergence for a novel sixth order iterative method under hypothesis only on the first derivative, Santhosh George, Ioannis K Argyros, 263-271
- Approximate Controllability of Random Impulsive Semilinear Control systems, S Vijay, C Loganathan, A Vinodkumar, 273-280
- Dini Lipschitz Functions for the Jacobi-Dunkl Transform in the Space L2, R Daher, S. El Ouadih, 281-290
- Asymptotically almost automorphic functions of order n and applications to dynamic equations on time scales, Gaston M. N’Guerekata, Aril Milcé, Jean-Claude Mado, 305-322
- Approximate Controllability of Second Order Semilinear Control Systems with Bounded Delay, Mohit Kumar, Sandeep Kumar, 323-331
- On the solutions of Pettis partial Hadamard-Stieltjes fractional integral equations, Said Abbas, Wafaa Albarakati, Mouffak Benchohra, Seenith Sivasundaram, 333-344

4.4. Contents: Mathematics in Engineering, Science and Aerospace
Contributed by: Seenith Sivasundaram, seenithi@gmail.com

Mathematics in Engineering, Science and Aerospace (MESA)
Vol 7, No 2 (2016)
Table of Contents

Articles
- Preface: Special issue dedicated to honoring the memory of Professor Dr. A.V. Balakrishnan, Anthony N. Michel, Stefan Balint, Seenith Sivasundaram, 219-222
- Guidance, navigation and control of information satellites: Methods for modeling, synthesis and nonlinear analysis, Yevgeny Somov, 223-248
- Asymptotic and spectral analysis and control problems for mathematical model of piezoelectric energy harvester, Marianna A. Shubov, Victor I. Shubov, 249-268
- Control of composite distributed parameter systems with actuator dynamics, John A. Burns, 269-288
- Threshold network dynamic systems and applications, G. S. Ladde, 289-313
- Stability analysis of some equilibria in a time-delay model for cell dynamics in leukemia including the action of the immune system, D. Candea, A. Halanay, I. R. Radulescu, 315-339
- Laplace transform method for sequential Caputo fractional differential equations, Aghalaya S. Vatsala, Bhuvaneswari Sambandham, 341-349
- Differential equations-retardation, anticipation and synchronized anticipation-A survey, J. Vasundhara Devi, Z. Drici, F. A. Mc Rae, 351-376
- Analysis & validation of exact solutions to Navier-Stokes equation in connection with quantum fluid dynamics, U.S. Vevek, Hamidreza Namazi, R. Haghighi, Vladimir V. Kulish, 389-417
- Numerical analysis of blowing jets flows on Coanda surface to increase lift of wing or generated power of wind turbine, Alexandru Dumitrache, Florin Frunzulica, 419-440

4.5. Contents: Control Theory and Technology
Contributed by: Zou Tiefeng, tfzou@scut.edu.cn

Table of Contents
Control Theory and Technology
(The original title: Journal of Control Theory and Applications)
ISSN: 2095-6983 CODEN: CTTOAM
Vol. 14, No. 2, May 2016
http://jcta.alljournals.ac.cn/cta_en/ch/index.aspx
http://www.springer.com/engineering/control/journal/11768
- Robot impedance control and passivity analysis with inner torque and velocity feedback loops, M. Focchi, G. A. MedranoCerda, T. Boaventura, M. Frigerio, C. Semini, J. Buchli, D. G. Caldwell P.97
- Adaptive control for an uncertain robotic manipulator with input saturations, T. T. Tran, S. S. Ge, W. He P. 113
- Convergence, stability and robustness analysis of the OFEX controller for high-speed networks, J. Liu, O. W. W. Yang P. 122
- Lyapunov stability and generalized invariance principle for nonconvex differential inclusions, S. Liang, X. Zeng, Y. Hong P. 140
- A necessary and sufficient stabilization condition for discrete time-varying stochastic systems with multiplicative noise, R. Gao, X. Liu, H. Zhang P. 151
- Fault detection for nonlinear discrete-time systems via deterministic learning, J. Hu, C. Wang, X. Dong P. 159
- Erratum to: Engineering cybernetics: 60 years in the making, Z. Gao P. 176

4.6. Contents: Mathematics of Control, Signals, and Systems
Contributed by: Lars Gruene, lars.gruene@uni-bayreuth.de

Mathematics of Control, Signals, and Systems (MCSS)
Volume 28, Number 2
http://link.springer.com/journal/498/28/2
Table of Contents
- A Fibonacci control system with application to hyper-redundant manipulators, Anna Chiara Lai, Paola Loreti, 32 pages
- Accessibility of bilinear networks of systems: control by interconnections, Gunther Dirr, Uwe Helmke,
Frederike Rüppel, 25 pages
- On data dependence of stability domains, exponential stability and stability radii for implicit linear dynamic equations, Nguyen Thu Ha, Nguyen Huu Du, Do Duc Thuan, 28 pages
- Approximation of the controls for the linear beam equation, Sorin Micu, Ionel Roventa, 53 pages
- Counting critical formations on the circle: algebraic-geometric and Morse-theoretic bounds, Christian Lageman, Uwe Helmke, 29 pages
- On the lack of controllability of fractional in time ODE and PDE, Qi Lü, Enrique Zuazua, 21 pages

4.7. Contents: Control Engineering Practice
Contributed by: Martin Böck, cep@acin.tuwien.ac.at

Control Engineering Practice
Volume 52
July 2016
- Vasiliki Koropouli, Azwirman Gusrialdi, Sandra Hirche, Dongheui Lee, An extremum-seeking control approach for constrained robotic motion tasks, Pages 1-14
- Alessandro Vittorio Papadopoulos, Cristian Klein, Martina Maggio, Jonas Dürango, Manfred Dellkrantz, Francisco Hernández-Rodriguez, Erik Elmroth, Karl-Erik Arzen, Control-based load-balancing techniques: Analysis and performance evaluation via a randomized optimization approach, Pages 24-34
- Zhongyang Han, Jun Zhao, Wei Wang, Ying Liu, A two-stage method for predicting and scheduling energy in an oxygen/nitrogen system of the steel industry, Pages 35-45
- Zhentong Liu, Qadeer Ahmed, Jiuy Zhang, Giorgio Rizzoni, Hongwen He, Structural analysis based sensors fault detection and isolation of cylindrical lithium-ion batteries in automotive applications, Pages 46-58
- Cassio Luciano Baratieri, Humberto Pinheiro, New variable gain super-twisting sliding mode observer for sensorless vector control of nonsinusoidal back-EMF PMSM, Pages 59-69
- Hasan Arshad Nasir, Erik Weyer, System identification of the upper part of Murray River, Pages 70-92
- Vishal Mahindrakar, Juergen Hahn, Model predictive control of reactive distillation for benzene hydrogenation, Pages 103-113
- Mohammed Obaid Mustafa, Damiano Varagnolo, George Nikolakopoulos, Thomas Gustafsson, Detecting broken rotor bars in induction motors with model-based support vector classifiers, Pages 15-23
- Qiu Qin, N. Eva Wu, A multiple model filtering approach to transmission line fault diagnosis, Pages 93-102

Contributed by: AMCS, amcs@uz.zgora.pl

International Journal of Applied Mathematics and Computer Science (AMCS)
2016, Volume 26, Number 2 (June)
Regular issue
CONTENTS
- Babiarz A., Klamka J. and Niezabitowski M. Schauder’s fixed-point theorem in approximate controllability problems 263
- Kaczorek T. Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems 277
- Zhou L., She J., Li C. and Pan C. Robust aperiodic-disturbance rejection in an uncertain modified repetitive control system 285
- Klaučo M., Blažek S. and Kvasnica M. An optimal path planning problem for heterogeneous multi-vehicle systems 297
- García-Rodríguez R., Segovia-Palacios V., Parra-Vega V. and Villalva-Lucio M. Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips 309
- Owczarkowski A. and Horla D. Robust LQR and LQI control with actuator failure of a 2DOF unmanned bicycle robot stabilized by an inertial wheel 325
- Saldivar B., Mondié S. and Ávila Vilchis J.C. The control of drilling vibrations: A coupled PDE-ODE modeling approach 335
- Debski R. An adaptive multi-spline refinement algorithm in simulation based sailboat trajectory optimization using onboard multi-core computer systems 351
- Dudin A., Lee M.H. and Dudin S. Optimization of the service strategy in a queueing system with energy harvesting and customers’ impatience 367
- Atencia I. A discrete-time queueing system with changes in the vacation times 379
- Lopez-Loces M.C., Musial J., Peccero J.E., Fraire-Huacuja H.J., Blazewicz J. and Bouvry P. Exact and heuristic approaches to solve the Internet shopping optimization problem with delivery costs 391
- Kurama O., Luukka P. and Collan M. An n-ary λ-averaging based similarity classifier 407
- Van T.T. and Le T.M. Content-based image retrieval using a signature graph and a self-organizing map 423
- Tabedzki M., Saeed K. and Szczepanski A. A modified K3M thinning algorithm 439
- Pujol F.A., Mora H. and Girona-Selva J.A. A connectionist computational method for face recognition 451
- Siwek K. and Osowsi S. Data mining methods for prediction of air pollution 467
- Singh P.K., Aswani Kumar C. and Gani A. A comprehensive survey on formal concept analysis, its research trends and applications 495

Contributed by: Fikret Aliev, chief_ed@acmij.az

Applied and Computational Mathematics: An International Journal
Vol.15, No.2, June 2016
www.acmij.az

CONTENTS
- K. Jbilou, A Survey of Krylov-Based Methods for Model Reduction in Large-Scale MIMO Dynamical Systems pages: 117-148
- Y. Huang, Z. Liu, R. Wang, Quasilinearization for Higher Order Impulsive Fractional Differential Equations pages: 159-171
4.10. Contents: Asian Journal of Control
Contributed by: Lichen Fu, lichen@ntu.edu.tw

Asian Journal of Control
Vol. 18, No. 3 May, 2016
CONTENTS

[Regular Paper]
1. Paper Title: Stabilization and Control of Delayed Recycling High Order Systems with one Unstable Pole at the Direct Path
 Authors: Juan Francisco Marquez-Rubio, Rocio Jasmin Vazquez-Guerra, Basilio del Muro-Cuellar and Olivier Sename
2. Paper Title: Control of Selective Catalytic Reduction Systems Using Feedback Linearisation
 Authors: Soma Tayamon and Torbjorn Wigren
3. Paper Title: H_∞ Control with Transients for Singular Systems
 Authors: Zhiguang Feng, James Lam, Shengyuan Xu and Shaosheng Zhou
4. Paper Title: The Mixed Robust H_∞/FTS Control Problem Analysis and State Feedback Control
 Authors: Francesco Amato, Carlo Cosentino and Gianmario De Tommasi, Alfredo Pironti
5. Paper Title: A New Algorithm to Design Minimal Multi-Functional Observers for Linear Systems
 Authors: Reza Mohajerpoor, Hamid Abdi and Saeid Nahavandi
6. Paper Title: Faulty Plant Reconfiguration Based on Disturbance Decoupling Methods
 Authors: A. Kaldmae, U. Kotta, B. Jiang, A. Shumsky and A. Zhirabok
7. Paper Title: Valve Position-based Control at Engine Key-on of an Electro-mechanical Valve Actuator for Camless Engines: A Robust Controller Tuning Via Bifurcation Analysis
 Author: Carlos I. Hoyos Velasco and Alessandro di Gaeta
8. Paper Title: Contouring Control for Multi-Axis Motion Systems With Holonomic Constraints: Theory and Application to a Parallel System
 Authors: Shyh-Leh Chen and Yuan-Cheng Tsai
 Authors: Feng Tyan
10. Paper Title: Robust H_∞ Tracking Control of Uncertain Robotic Systems with Periodic Disturbances
 Authors: Yeong-Chan Chang
11. Paper Title: Optimal Controlled Nodes Selection for Fast Consensus
 Authors: Wen Yang, Ying Wang, Xiaofan Wang and Hongbo Shi
12. Paper Title: Event-Triggered Control for Multi-Agent Systems with General Directed Topology and Time Delays
 Authors: Lan Gao, Xiaofeng Liao, Huaqing Li and Guo Chen
Authors: Majid Hallaji and Assef Zare
14. Paper Title: Distributed consensus of delayed multi-agent systems with nonlinear dynamics via intermittent control
Authors: Zhiyong Ye, Yungen Chen and Hua Zhang
15. Paper Title: A Control Parameterization Approach with Variable Time Nodes for Optimal Control Problems
Authors: Guodong Li, Ping Liu and Xinggao Liu
16. Paper Title: Direct Power Control of Dfòg by Using Nonlinear Model Predictive Controller
Authors: Nasrin Kalamian, Mohammad Verij Kazemi and S. Asghar Gholomian
17. Paper Title: Supervised Multi-Rejector of Periodic Disturbances for Nonlinear Systems Using Decoupled State Multimodel
Authors: Mouhib Allaoui, Anis Messaoud, Khadija Dehri and Ridha Ben Abdennour
18. Paper Title: Robust Missile Autopilots With Finite-Time Convergence
Authors: Shaoming He, Jiang Wang and Defu Lin
Authors: Onder Tutsoy
20. Paper Title: Distributed MPC for Tracking and Formation of Homogeneous Multi-agent System with Time-Varying Communication Topology
Authors: Baocang Ding, Liang Ge, Hongguang Pan and Peng Wang
21. Paper Title: Robust State Feedback Formulation for High Order Repetitive Controllers
Authors: Jeferson V. Flores and Aurelio T. Salton, Rafael S. Castro
22. Paper Title: State Feedback Stabilization Over Finite-State Fading Channels
Authors: Nan Xiao, Yugang Niu and Lihua Xie
23. Paper Title: Simultaneous Target Flying Mode Identification and Altitude Estimation in Bistatic T/R-R HFSWR
Authors: Kongrui Zhao, Changjun Yu, Gongjian Zhou and Taifan Quan
24. Paper Title: Using a Two-Level Structure to Manage the Point Location Problem in Explicit Model Predictive Control
Authors: Ju Zhang, Xiaojie Xiu, Zuozhang Xie and Biaobiao Hu
25. Paper Title: Robust Adaptive Neural Control for a Class of Time-Varying Delay Systems with Backlash-like Hysteresis Input
Authors: Xiuyu Zhang, Zhi Li, Chun-Yi Su, Xinkai Chen, Jianguo Wang and Linlin Xia
26. Paper Title: Tuning Method for Fractional Complex Order Controller Using Standardized k-Chart: Application to Pemfc Control
Authors: Masoomeh Shahiri, Abolfazl Ranjbar Noei, Mohammad Reza Karami and Reza Ghaderi
27. Paper Title: Tracking Performance Bound with Finite Control Energy and Erasure Channel Energy Constraint
Authors: Baoxian Wang, Ding-Xue Zhang, Zhi-Hong Guan, Bin Hu and Yuehua Huang

[Brief Paper]
1. Paper Title: Disturbance Decoupling of Time Delay Systems
Authors: A. Kaldmae and C. H. Moog
2. Paper Title: Robust State-and-Disturbance Observer Design for Linear Non-minimum-phase Systems
Authors: Min-Shin Chen, Shih-Yu Lin, Ming-Lei Tseng, Yi-Liang Yeh and Jia-Yush Yen
3. Paper Title: Quantization Effect on Sliding Mode Control of Uncertain Dynamical Systems
Authors: Yan Yan, Xinghuo Yu and Changyin Sun
4. Paper Title: Geometrical Dissipativity-Based Output Synchronization of Discrete Dynamical Networks with Non-Identical Nodes
Authors: Chensong Li and Jun Zhao
5. Paper Title: An Indirect Adaptive Fuzzy Control Scheme for a Class of Nonlinear Systems
Authors: Indrani Kar
6. Paper Title: State-Feedback Stabilization of Stochastic Nonlinear Systems with Time-Varying Delay and Different Orders
Authors: Tiancheng Wang and Wuquan Li
7. Paper Title: Guidance Laws With Input Constraints and Actuator Failures
Authors: Liao Fei and Ji Haibo

Back to the contents

Contributed by: Fikret Aliev, proceedings.IAM@gmail.com

ISSN 2225-0530,

CONTENTS
- Fikret A. Aliev, V.B. Larin, On the construction of general solution of the generalized Sylvester equation
- A.Kh. Khanmamedov, L.K. Asadova, On a solvability of some equations related with s-functions of the discrete Sturm-liouville equation
- G. Oner, Completeness of some normal modal logics
- F.H. Rahimov, I.A. Ibadova, A.D. Farkhadova, T.E. Hashimova, Limit theorems for the random walk described by the autoregression process of order one
- K.R. Aida-zade, D.A Asadova, Numerical solution to discrete systems of block structure with boundary conditions unshared between blocks
- M. Gachpazan, H. Beiglo, M. Erfanian, APQWs in complex plane: Application to Fredholm integral equations
- N.A. Aliyev, R.H. Akhmedov, Investigation of the solutions of the Cauchy problem and boundary-value problems for the ordinary differential equations with continuously changing order of the derivative
- R. Shah, A. Zada, Some common fixed point theorems of compatible maps with integral type contraction in G-metric spaces
- Fikret A. Aliev, N.A. Ismayilov, A.A. Namazov, M.F. Radjabov, Asymptotic method to the solution of the identification problems for the dynamic systems
- H. Öztok, Normal and rectifying curves in galilean space G3
- Fikret A. Aliev, N.A. Aliev, A.P. Guliev, Some space inverse problems for determining hydraulic resistance’s coefficients in the lifting in oil production

Back to the contents
1. FS on Intelligent Robotics for Rehabilitation and Human Assistance
Guest editors: Jingang Yi (jgyi@rutgers.edu), Jun Ueda (jun.ueda@me.gatech.edu), and Xiangyang Zhu (mexyzhu@sjtu.edu.cn)
Submission deadline: August 15, 2016
Intelligent robotics plays a central role in the development of rehabilitation and human assistive robots, which is an important and increasing demand for maximizing the effectiveness/efficiency of the clinical therapy and processes, developing innovative solutions to promote independent living of senior citizens as well as persons with disability, and enhancing the power of the wearer in various environments. Recent advances in computational intelligence, and sensing and control technologies enable new applications in quantitative human motion analysis, diagnosis, monitoring and feedback allowing more autonomous personalized treatments without the need for constant therapist interaction. In an effort to disseminate current advances and identify challenges/opportunities, the focused section seeks submissions on original investigations relating to design, modeling and control of rehabilitation and human assistive robotic systems. Papers should contain both theoretical and practical/experimental results. Potential topics include but are not limited to:
- Rehabilitation robotics
- Exoskeleton robots and power-assisting devices
- Sensors and actuators for human-assistive systems
- Prosthetic devices and assistive systems
- Modeling and control of physical human-robot interactions
- Human-centered intelligent systems
- Argumentation of motor and sensory functions

2. FS on Advances in Soft Robotics
Guest editors: Xiaobo Tan (xbtan@egr.msu.edu), Kam Leang (kam.k.leang@utah.edu), and Zhouping Yin (yinzhp@mail.hust.edu.cn)
Submission deadline: September 1, 2016
Soft robotics, inspired by biological organisms including octopuses, worms, starfish, and elephants, offers promising and innovative solutions for safe and adaptive interactions in unstructured environments and with humans. The development of soft robots presents a number of challenges in material synthesis, mathematical modeling, mechanism design, and control, and has attracted increasing attention from researchers in recent years. For instance, a soft robot comprised of sensors, actuators, and structures, all with soft, deformable, and compliant characteristics, requires advances in material development and manufacturing technology. Also, it is crucial to have distributed, effective control architecture that requires minimal computing power. Additionally, it is of great importance to develop computationally-efficient modeling tools for soft and deformable materials and structures. The goal of this focused section is to highlight some of the key advances made in the field of soft robotics. Topics of interest for the focused section include but are not limited to:
- Electronic skin
- Soft material sensors and actuators
- Distributed sensing, actuation, and control strategies
- Mechanism design and dynamics for soft robots
- Modeling and simulation tools for soft robotics
- Enabling tools for prototyping soft robots
- Prototypes and applications
A great variety of intelligent robots are finding exciting applications in civil infrastructure. For example, in the past few years, small-size crawling and flying robots have been investigated for bridge inspection. Meanwhile, intelligent robotics and machinery of much larger size are played an important role in construction and maintenance of civil infrastructure. Furthermore, the combination of robotics, electronics, computing and network has also thrust a significant amount of work in smart structural technologies. In an effort to disseminate current advances of various robotics technologies for large civil structures, this focused session seeks submissions in relevant areas. Papers should contain both theoretical and practical/experimental results. Potential topics include but are not limited to:

- Robotics in construction machinery for large-scale civil infrastructure
- Mobile sensor network and robotic inspection for civil structures
- Cyber-physical civil infrastructure systems
- Prognostics, health monitoring and high-efficiency operation of large civil structures
- Robotic rehabilitation of large civil structures
- Novel actuation and control techniques for construction machinery and construction automation

These topics are of great relevance to the IEEE CSS community. Please consider submitting your work to these Focused Sections. Feel free to contact the guest editors for any questions you might have.

Manuscript Preparation
Papers must contain original contributions and be prepared in accordance with the journal standards. Instructions for authors are available online at: http://www.springer.com/41315.

Manuscript Submission
Manuscripts should be submitted online at: https://www.editorialmanager.com/jira. The cover letter should report and indicate the focused section names. All manuscripts will be subjected to the peer review process. If you have any questions relating to this focused section, please email one of the Guest Editors.
A wide range of new services and applications are being enabled by vehicular cooperation, supporting better safety and navigation, driver behavior improvement and coaching, traffic efficiency, emission reduction. A true collaborative approach adds significance to the driver’s and travelers’ role, thus substantially increasing the potential and variety of the offered services – with safety and security-related issues as well.

Several initiatives have been carried out in the recent years, also on large scale, and this special issue intends to offer a reference point for showcasing the leading-edge research work in the field.

We solicit papers describing applications, systems, platforms, and techniques for collaborative driving. The topics of interest include, but are not limited to:
- Applications based on inter-vehicle, inter-driver and vehicle-infrastructure collaboration (e.g., collaborative navigation, collaborative parking, traffic management, collaborative/cooperative collision warning and avoidance, overtaking assistance, Collaborative/Cooperative Adaptive Cruise Control, lane merging and splitting, multi-lane platooning, etc.)
- Safety and security issues in collaborative driving
- Big data and data processing technologies for collaborative driving
- Algorithms for collaborative driving, e.g., sensor fusion, robust and safe control
- Hardware and systems for collaborative driving
- Collaborative mapping and localization systems
- ITS community building and social gaming
- Communications systems and protocols for collaborative driving
- Human-Computer interaction/interface for collaborative driving systems
- Impact of collaborative driving, e.g., on traffic, energy, environment, and society
- Autonomous technologies for collaborative driving
- Business and economic model for collaborative driving
- User studies on collaborative driving

First submission deadline: September 30th, 2016.
Notification of first decision: December 31st 2016.
First revision submission deadline: February 28th 2017.
Notification of final decision: April 30th 2017.
Final manuscript (camera ready) submission deadline: May 15th 2017
Issue of Publication: October 2017

Contributed by: Sungwan Kim, journal@ijcas.com

International Journal of Control, Automation, and Systems (IJCAS)
ISSN: 1598-6446
http://www.springer.com/engineering/robotics/journal/12555
Indexed in: Science Citation Index Expanded (SciSearch), Journal Citation Reports/Science Edition, SCOPUS, INSPEC, Google Scholar, ProQuest, Academic OneFile, Current Contents/Engineering, Computing and Technology, EI-Compendex, OCLC, SCImago, Summon by Serial Solutions

CALL FOR PAPERS
Special Issue on Soft Robotics
* Publication: February 2017 * Submission Deadline: July 31, 2016
With rapidly growing interests in ‘Soft Robot International Journal of Control, Automation, and Systems (IJCAS) is pleased to announce an upcoming Special Issue on Soft Robotics. This Special Issue is intended to address the state-of-art of Soft Robot related researches and the leading researchers in soft robotics are strongly encouraged to submit their contributions to share the past, present, and future directions of soft robotics research as well as to discuss their recent research outcomes. Various important works in soft robotics including sensors, actuators, structures, modeling & control, and fabrication techniques are intended to be addressed.

The special issue publishes original papers of novel discoveries, improvements, and results relevant to the field of Soft Robotics both in theory and applications. Also, priorities will be given to papers reporting original work strongly supported by experimental results and carefully designed studies that can be shared by the research community.

Topics of interest of this Special Issue include, but are not limited to:
- Soft Robot Modeling & Simulation
- Soft Robot Control
- Soft Sensors & Soft Actuators
- Soft Electronics
- Soft/Flexible Materials & Structures
- Soft Robot & Human Interface
- Soft Robot System
- Soft Robot Applications

To explore possible topics, feel free to contact the guest editors. Accepted papers will be published in the special issue of International Journal of Control, Automation, and Systems (indexed as SCIE), which is scheduled in February 2017. All manuscripts will go through regular review processes of the journal.

Manuscript Preparation and Submission
Follow the guidelines in “Information for Authors” in International Journal of Control, Automation and Systems http://www.ijcas.com/. Please submit your manuscript in electronic form through Manuscript Central web site: http://jcas.edmgr.com/. On the submitting page #1 in popup menu of manuscript type, select: “Special Issue on Soft Robotics”.

Important Dates
Submission of Manuscripts 7/31/2016
Notification of Acceptance 10/31/2016
Submission of Final Papers 12/31/2016
Publication February 2017

Guest Editor
Sungwan Kim, Guest Editor
Professor in Seoul National University & PM in National Research Foundation of Korea, Korea
e-mail: sungwan@snu.ac.kr

5. Conferences

5.1. Annual Allerton Conference on Communication, Control, and Computing
Contributed by: Angie Ellis, amellis@illinois.edu
The Fifty-Fourth Annual Allerton Conference on Communication, Control, and Computing will kick off with Opening Tutorials being held on Tuesday, September 27, 2016 at the Coordinated Science Laboratory. The conference sessions will start on Wednesday, September 28, 2016 through Friday, September 30, 2016, at the Allerton Park and Retreat Center. The Allerton House is located twenty-six miles southwest of the Urbana-Champaign campus of the University of Illinois in a wooded area on the Sangamon River. It is part of the fifteen-hundred acre Robert Allerton Park, a complex of natural and man-made beauty designated as a National natural landmark. Allerton Park has twenty miles of well-maintained trails and a living gallery of formal gardens, studded with sculptures collected from around the world.

Papers presenting original research are solicited in the areas of biological information systems; coding techniques and applications; coding theory; data storage; information theory; multiuser detection and estimation; network information theory; sensor networks in communications; wireless communication systems; intrusion/anomaly detection and diagnosis; network coding; network games and algorithms; performance analysis; pricing and congestion control; reliability, security and trust; decentralized control systems; robust and nonlinear control; adaptive control and automation; robotics; distributed and large-scale systems; complex networked systems; optimization; dynamic games; machine learning and learning theory; signal models and representations; signal acquisition, coding, and retrieval; detection and estimation; learning and inference; statistical signal processing; sensor networks; and data analytics.

INFORMATION FOR AUTHORS: Regular papers suitable for presentation in twenty minutes are solicited. Regular papers will be published in full (subject to a maximum length of eight 8.5” x 11” pages, in two column format) in the Conference Proceedings. Only papers that are actually presented at the conference and uploaded as final manuscripts can be included in the proceedings, which will be available after the conference on IEEE Xplore.

For reviewing purposes of papers, a title and a five to ten page extended abstract, including references and sufficient detail to permit careful reviewing, are required.

Manuscripts can be submitted during June 15-July 8, 2016 with the submission deadline of July 8th being firm. Please follow the instructions at the Conference website: http://www.csl.illinois.edu/allerton/.

Authors will be notified of acceptance via e-mail by August 8, 2016, at which time they will also be sent detailed instructions for the preparation of their papers for the Proceedings.

Final versions of papers to be presented at the conference are required to be submitted electronically by October 2, 2016 in order to appear in the Conference Proceedings and IEEE Xplore.

PLENARY LECTURE: Professor Naomi Leonard from the Mechanical and Aerospace Engineering, Princeton University, will deliver this year’s plenary lecture. It is scheduled for Friday, September 30, 2016 at the Allerton Park and Retreat Center.

OPENING TUTORIAL LECTURES: Professor Panagiotis Tsiotras, Georgia Institute of Technology, and Professor Emmanuel Abbe, Princeton University, will both present a tutorial lecture on Tuesday, September 27, 2016 at the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign.

5.2. IFAC Symposium on Nonlinear Control Systems
Contributed by: Wei Kang, wkang@nps.edu

2016 IFAC Symposium on Nonlinear Control Systems (NOLCOS 2016)
Registration is open
August 23-25, 2016, Monterey Marriott
Monterey, California, USA
https://www.math.ucdavis.edu/static/conferences/nolcos_2016/

Online Registration https://ifac.papercept.net/registration/index.php
Early Registration deadline: June 10, 2016
Regular Registration: June 11 - August 25, 2016

The IFAC NOLCOS symposium is a continuing series of triennial symposia that started in Capri, 1989. The scope of the symposia has been on the theory and application of nonlinear control systems. NOLCOS has been acknowledged as the major international gathering of leading experts in industry and academia in the field of nonlinear control. Monterey, California, is a beautiful city located on the southern edge of Monterey Bay within driving distance from Silicon Valley, the world center of high-tech, and several universities including Stanford, UC Berkeley, UC Santa Cruz, and Naval Postgraduate School. A limited block of rooms at a very attractive rate have been reserved at Monterey Marriott for the conference attendees. Please go to the conference website for instructions on registration and hotel reservation.

NOLCOS in Monterey aims at strengthening worldwide contacts between academia and industry to build up new networks and cultivate existing relations. The themes of the conference include, but not limited to
- Control Theory: control and estimation of nonlinear systems, stability and Lyapunov methods, geometric control, optimization-based control methods.
- Applications: control of unmanned systems and robotics, energy and power systems, guidance and control, biological systems.
- Systems and Control: computation and control for large-scale systems, control of distributed parameter systems, systems and parameter identification, control of hybrid systems, cooperative control and networked systems, control of stochastic systems.

Besides the exciting scientific program there will be several social activities including an opening reception, a conference banquet and a closing reception at the world famous Monterey Bay Aquarium sponsored by the Mathworks. There are numerous activities in the Monterey area, including visiting the Carmel Mission, wine tasting in Carmel and Carmel Valley and the touring the rugged Big Sur coastline. Attendees are encouraged to bring their families and enjoy the region. The special conference hotel rate is available from Aug. 20-26. Book early as rooms at this rate are limited.

5.3. International Symposium on Distributed Autonomous Robotic Systems

Contributed by: Roderich Gross, r.gross@sheffield.ac.uk

Final Call for Papers
DARS 2016 (http://dars2016.org)
13th International Symposium on Distributed Autonomous Robotic Systems
November 7-9, 2016. Natural History Museum, London, UK
Submission deadline: July 5, 2016
News: Special Issue on Distributed Robotics (see publication details)

ABOUT DARS
Now in its 13th edition, DARS provides a forum for scientific advances in the theory and practice of distributed autonomous robotic systems. It is a highly selective, single-track meeting that is soliciting submissions presenting significant, original, and previously unpublished research.
Distributed robotics is an interdisciplinary and rapidly growing area, combining research in computer science, communication and control systems, and electrical and mechanical engineering. Distributed robotic systems can autonomously solve complex problems while operating in highly unstructured real-world environments. They are expected to play a major role in addressing future societal needs, for example, by improving environmental impact assessment, food supply, transportation, manufacturing, security, and emergency and rescue services. DARS 2016 will build upon past successes and provide an exciting environment to present and discuss the latest technologies, algorithms, system architectures, and applications. All interested researchers and engineers are invited to take part in DARS 2016.

PUBLICATION DETAILS
All accepted contributions will be included as full-length papers in the Proceedings of DARS 2016. The proceedings will be published in the Springer STAR series (Springer Tracts in Advanced Robotics): http://www.springer.com/series/5208.

In addition, the Autonomous Robots journal plans to publish a special issue on Distributed Robotics in cooperation with DARS (details about the open call will be announced in due course).

KEYNOTE SPEAKERS
- Nikolaus Correll - University of Colorado Boulder, USA
- Vijay Kumar - University of Pennsylvania, USA
- James AR Marshall - The University of Sheffield, UK
- Katia Sycara - Carnegie Mellon University, USA

SUBMITTING TO DARS 2016
Papers should be formatted according to the style files of Springer Tracts in Advanced Robotics. The page limit is 12 pages. The submission system is available at https://ocs.springer.com/ocs/en/conference/submitpaperto/DARS2016

Papers are solicited in all areas of distributed autonomous robotics, including, but not restricted to:
- Architectures for teams of robots
- Self-organizing and self-assembling robotic systems
- Swarm robotic systems
- Hybrid symbiotic teams (humans and robots, animals and robots)
- Learning and adaptation in teams of robots
- Modular robotics
- Localization and navigation in multi-robot systems
- Multi-robot and multi-vehicle motion coordination
- Distributed cooperative perception
- Distributed cooperative action
- Distributed control and planning
- Control issues in multi-robot systems
- Performance metrics for robot teams
- Distributed decision making
- Sensor and actuator networks
- Networking issues in multi-robot systems
- Wireless and robotic sensor networks
- Multi-robot applications in exploration, inspection, coverage, search and rescue, service, environmental monitoring, etc.

Submission instructions are available on http://dars2016.org
IMPORTANT DATES
- July 5, 2016 Paper Submission
- September 7, 2016 Author Notification
- September 21, 2016 Camera Ready Submission
- November 7-9, 2016 Conference

SPONSORS & EXHIBITORS
DARS is technically co-sponsored by the IEEE Robotics and Automation Society. Vicon Motion Systems is a Platinum Sponsor of DARS 2016. If you wish to become a sponsor of, or exhibitor at, DARS 2016, please visit http://dars2016.org.

AWARDS
The following awards will be presented at the conference:
- Best Paper Award (certificate and cash honorarium of USD 1000)
- Best Application Paper Award (by IET Robotics & Mechatronics TPN)
- Best Poster Award (by Springer)

SOCIAL MEDIA
Follow us on social media for all the latest updates. More information at http://dars2016.org

5.4. ACM Workshop on Cyber-Physical Systems Security & Privacy
Contributed by: Quanyan Zhu, qz494@nyu.edu

2nd ACM Workshop on Cyber-Physical Systems Security & Privacy (CPS-SPC)
In Conjunction with the 23rd ACM Conference on Computer and Communications Security (CCS)
Location: Hofburg Palace, Vienna, Austria
Date: Friday, October 28, 2016
Workshop website: http://eecs.oregonstate.edu/cps-spc/index.html

Cyber-Physical Systems (CPS) integrate computing and communication capabilities with monitoring and control of entities in the physical world. These systems are usually composed of a set of networked agents, including sensors, actuators, control processing units, and communication devices. While some forms of CPS are already in use, the widespread growth of wireless embedded sensors and actuators is creating several new applications in areas such as medical devices, autonomous vehicles, and smart infrastructure, and is increasing the role that the information infrastructure plays in existing control systems such as in the process control industry or the power grid.

Many CPS applications are safety-critical: their failure can cause irreparable harm to the physical system under control, and to the people who depend, use or operate it. In particular, critical cyber-physical infrastructures such as the electric power generation, transmission and distribution grids, oil and natural gas systems, water and waste-water treatment plants, and transportation networks play a fundamental and large-scale role in our society and their disruption can have a significant impact to individuals, and nations at large. Securing these CPS infrastructures is therefore vitally important.

Similarly because many CPS systems collect sensor data non-intrusively, users of these systems are often unaware of their exposure. Therefore in addition to security, CPS systems must be designed with privacy considerations.

To address some of these issues, we invite original research papers on the security and/or privacy of Cyber-Physical Systems. We seek submissions from multiple interdisciplinary backgrounds tackling security and
privacy issues in CPS, including but not limited to:
- mathematical foundations for secure CPS
- control theoretic approaches to secure CPS
- security architectures for CPS
- security and resilience metrics for CPS
- metrics and risk assessment approaches for CPS
- privacy in CPS
- network security for CPS
- game theory applied to CPS security
- security of embedded systems, IoT and real-time systems in the context of CPS
- human factors and humans in the loop
- CPS reliability and safety
- economics of security and privacy in CPS
- intrusion detection in CPS

CPS domains of interest include but are not limited to:
- health care and medical devices
- manufacturing
- industrial control systems
- SCADA systems
- robotics
- unmanned aerial vehicles (UAVs)
- autonomous vehicles
- transportation systems and networks
- abstract theoretical CPS domains that involve sensing and actuation

Also of interest will be papers that can point the research community to new research directions, and those that can set research agendas and priorities in CPS security and privacy.

Publication of Papers
Papers will be digitally published as part of the CCS workshop proceedings, and will be part of the ACM digital library.

Important Dates
July 27th, 2016 Paper Submission Deadline (UTC-11)
August 31st, 2016 Notification of Acceptance
September 15th, 2016 Camera Ready Submission (Hard Deadline)
October 28th 2016 Workshop

5.5. World Congress: Mathematical Problems in Engineering, Aerospace and Sciences
Contributed by: Seenith Sivasundaram, seenithi@gmail.com

World Congress: Mathematical Problems in Engineering, Aerospace and Sciences
WHEN: 05-08 July 2016
WHERE: La Rochelle, France, University of La Rochelle
Website: http://www.icnpaa.com
http://www.internationalmathematics.com/icnpaa/
ICNPAAs AIM
Mathematical Problems in Engineering, Aerospace and Science have stimulated cooperation among scientists from a variety of disciplines. Developments in computer technology have additionally allowed for solutions of mathematical problems. This international forum will extend scholarly cooperation and collaboration, encouraging the dissemination of ideas and information.

The conference will have a pool of active researchers, with a proper balance between academia and industry, as well as between senior and junior researchers, including graduate students and post-doctoral fellows. It is anticipated that such a balance will provide both senior and junior researchers an opportunity to interact and to have a wider picture of recent advances in their respective fields. The conference, especially, enables the setting up of new interdisciplinary research directions among its participants by establishing links with world renowned researchers, making possible joint international projects that will no doubt bring about fresh and innovative ideas and technologies in engineering, aerospace and sciences

Co-Sponsored by: AIAA: American Institute of Aeronautics and Astronautics
IFIP: International Federation of Information Processing
La Rochelle, France, University of La Rochelle
The proceedings will be published by the American Institute of Physics.

5.6. International Conference on Control, Automation and Systems
Contributed by: ICCAS2016, conference@icros.org

2016 16th International Conference on Control, Automation and Systems (ICCAS 2016)
October 16(SUN)-19(WED), 2016
HICO, Gyeongju, Korea
http://2016.iccas.org

ICCAS 2016 will be held at HICO, Gyeongju, Korea on October 16(SUN)-19(WED), 2016. The aim of the ICCAS is to bring together researchers and engineers worldwide to present their latest works, and disseminate the state-of-the-art technologies related to control, automation, robotics, and systems.

Important Dates
July 15, 2016: Notification of paper acceptance
August 12, 2016: Submission of final camera-ready papers

Plenary Speakers
Andrew Schwartz (Univ. of Pittsburgh, USA)
Maria Prandini (Politecnico di Milano, Italy)
Sangchul Won (POSTECH, Korea)
Satoshi Tadokoro (Tohoku Univ., Japan)
James Ashton-Miller (Univ. of Michigan, USA)
Huijun Gao (Harbin Institute of Technology, China)
Song K. Choi (Univ. of Hawaii, USA)

Tutorials
- Stability, control and application of Markovian Jump systems
- Input Shaping Control to Reduce Residual Vibrations
- Machine Learning with Sequential Data
- Biomimetic Robotics
The treasure of a brilliant cultural heritage
Welcome to Gyeongju!! Gyeongju was the capital city of Shilla for 992 years. The history of Gyeongju, which was once called Seorabeol, is also the history of the thousand-year-old Shilla Dynasty. Gyeongju embraces a radiant ancient culture where Buddhism, science, and the arts and crafts of the people of Shilla flourished, and the great spirits of Hwarangdo attained the nification of the three kingdoms. This is why Gyeongju is so well preserved by its people and thus, has been designated as a World Cultural Heritage by UNESCO. The evergreen spirit of Shilla has been alive here for nearly a thousand years. Gyeongju is truly a museum without walls.

This event starts right after IROS 2016 (Oct. 9-14), Daejeon, Korea. It takes 1 hour from Daejeon to Gyeongju by KTX (Korea Train eXpress).

Thank you for your contributions and we look forward to seeing you at ICCAS 2016 during October 16-19, 2016.

5.7. CFP: Cross-Disciplinary Challenges for Autonomous Systems
Contributed by: Laura Humphrey, laura.humphrey@us.af.mil

Call for Participant: Cross-Disciplinary Challenges for Autonomous Systems
A proposal on “Cross-Disciplinary Challenges for Autonomous Systems” has been submitted for consideration at the 2016 AAAI Fall Symposia Series in Washington D.C. (November 17-19). As part of the proposal process, I need to gauge interest by putting together a list of people who would potentially be interested in attending (note responses are non-binding). If you would be interested, please respond in the next day or so using the form at: https://docs.google.com/forms/d/1ISj25Qzx-Gtj7Sb7k-oW4Eqzi8R3Mpt0LuizdWLLGo/viewform

To summarize, this symposium is being proposed with the recognition that no single discipline will be able to address all the challenges that face practical fielding of autonomous systems. The goal of this symposium is then two-fold. First, to allow attendees to share recent results from their own cross-disciplinary research, as well as specific tools and approaches accessible to researchers from other disciplines. Second, to engage in working groups focused on characterizing the current and future landscape of research in autonomy. For more details on the proposed symposium see: https://drive.google.com/file/d/0B-fzt2KvIVGCcG1oeGt6LUo4cXM/view?usp=sharing

Laura R. Humphrey, PhD AFRL/RQQA
Research Engineer, V&V of Autonomous Systems Bldg. 146, Rm 300
Aerospace Systems Directorate 2210 8th St.
Air Force Research Laboratory Wright-Patterson AFB, OH
45433-7531
Phone: (937) 713-7032 DSN 312
E-mail: laura.humphrey@us.af.mil

6. Positions

6.1. PhD: University of Groningen, Netherlands
Contributed by: Pietro Tesi, p.tesi@rug.nl

Contributed by Pietro Tesi p.tesi@rug.nl and Kanat Camlibel m.k.camilbel@rug.nl
The Engineering and Technology Institute Groningen jointly with the Johann Bernoulli Institute for Mathematics and Computer Science, at University of Groningen, The Netherlands, have one PhD position vacancy on: Complex Dynamical Networks: From Data to Connectivity Structure.

We are looking for candidates with an MSc degree in systems and control or applied mathematics, and with a strong background or interest in complex networks.

The main objective of the research is to develop methodologies and algorithms to identify the connectivity structure of a complex dynamical network on the basis of observation data. Dynamical networks are pervasive in today’s world, ranging from social and economic networks to biological networks and man-made infrastructures. The connection structure is very important in determining the overall network behavior. Therefore, satisfactory methods to identify the network connectivity structure, even at coarse-grained levels, are important in order to predict how a network might evolve and/or anticipate/counteract critical transitions. The research will focus on both theoretical models and real-world applications, in particular applications from energy systems. In addition, we will explore potential applications in the area of neuroscience.

The position is also affiliated with the Data Science and Systems Complexity Centre, at the University of Groningen. It concerns a research cluster of 58+ prominent researchers in a number of basic disciplines (mathematics, astronomy, computer science, artificial intelligence, systems & control) and scientific application domains (genomics, pharmacology, instrumentation), with the ambition of combining data and complexity sciences. The successful candidate will have the opportunity to work with a multi-disciplinary team of researchers.

A good command of the English language is required.

The appointment will be up to 4 years. As an employee of the university, the successful applicant will receive a competitive salary.

The successful applicant is expected to be available to commence his/her studies no later than 1 January 2017.

Interested candidates please send your inquiries together with your detailed CV and a 1-page letter of motivation or research statement to: p.tesi@rug.nl and m.k.camlibel@rug.nl (with f.g.fokkens@rug.nl in cc). Please specify the following text in the subject: Complex Dynamical Networks: From Data to Connectivity Structure - PhD application.

6.2. PhD: Chalmers University of Technology, Sweden

Contributed by: Tomas McKelvey, tomas.mckelvey@chalmers.se

PhD student position in Situation awareness for autonomous vehicles in complex environments
Ref nr: Ref 20160257

The PhD position is in Signal Processing group at the Department of Signals and Systems at Chalmers University of Technology, Sweden.

Information about the project
This project is concerned with self-driving vehicles, which is a vibrant and fast moving research area with a potential to fundamentally change the way humans transport themselves and transport goods. When designing self-driving vehicles, the vehicle’s ability to perceive its surroundings and to position itself on the road and in the road network is of utmost importance. For example, a highly accurate host position (of sub-meter accuracy) is crucial in order for the control algorithms to be able to plan the vehicle’s future path. Furthermore, self-driving vehicles have strict requirements on detecting and tracking all objects and
obstacles, even those not considered by traditional advanced driver support systems. That is, apart from tracking expected road users, such as pedestrians and cars, it also has to detect occasional debris lying on the road and track other less common vehicles.

Building on previous research conducted in the signal processing group, in this project we want to extend our perception platform to also cover self-localization, general obstacle detection (debris etc.) and estimation of drivable/safe road surface ahead of the host vehicle. We are interested in making contributions in a wide range of areas including adaptive maps, deep learning for point clouds and stereovision segmentation (drivable road estimation etc.) and cooperate perception and localization. Within the signal processing group, there is already a group of PhD students and senior researchers working on problems related to autonomous vehicles and perception, and you will have ample opportunities to collaborate with other researchers in our group.

Major responsibilities
Your major responsibilities are to pursue your own doctoral studies. You are expected to develop your own scientific concepts and communicate the results of your research both verbally and written in English. You are obviously also expected to contribute to research in the field of self-driving vehicles. The position includes teaching on Chalmers’ undergraduate level or performing other duties corresponding to at most 20 percent of working hours.

Position summary
Full-time temporary employment. The position is limited to a maximum of five years.

Qualifications
By the starting date, the applicant should have a Master of Science degree, or equivalent, in Electrical Engineering, Computer Science, Engineering Physics, Applied Mathematics, or a related discipline. A successful applicant should have a strong background in mathematics, Bayesian statistics, machine learning, optimization and programming. A genuine interest and curiosity in the subject, and excellent oral and written English communication skills are needed.

For more information see:
http://www.chalmers.se/en/about-chalmers/vacancies/?rmpage=job&rmjob=4165

6.3. PhD: Lehigh University, USA
Contributed by: Nader Motee, motee@lehigh.edu

Multiple Ph.D. Research Assistantship in Large-Scale and Distributed Control and Dynamical Networks. Contact: Prof. Nader Motee (motee@lehigh.edu)

Interested students and recently graduated PhD students are encouraged to apply for our open positions in Distributed Control and Dynamical Systems (DCDS) Laboratory in the Department of Mechanical Engineering and Mechanics at Lehigh University. There are several open positions for Summer 2016, Fall 2016, and Spring 2017 in the form of Research Assistants and Postdoctoral Scholars. For more information about our group and current research activities, please visit our website at
www.dcds-lab.com

Students with a M.Sc. degree, preferably in Control Systems/Optimization/Applied Math or other related areas, are strongly encouraged to apply. Undergraduate students with strong background in Control Systems, Communications, Optimization and Applied Mathematics are also encouraged to apply. Interested applicants with a Ph.D. in a related field (e.g., Control Systems/Optimization/Applied Math) are strongly encouraged to apply.
Lehigh is a premier residential research university, ranked in the top tier of national research universities each year. We are a coeducational, nondenominational, private university that offers a distinct academic environment of undergraduate and graduate students from across the globe. Located in Pennsylvania’s scenic Lehigh Valley, the campus is in close proximity to both New York City and Philadelphia. Lehigh is comprised of 2,358 acres, making it one of the largest private universities in the country.

Interested applicants may contact Prof. Nader Motee (motee@lehigh.edu) with the following information: (1) one-page research statement explaining how your background fits our current research group, (2) detailed CV and list of publications, (3) copies of one or two publications. All documents should be in PDF format.

6.4. PhD: University of Oldenburg, Germany
Contributed by: Martin Kuehn, martin.kuehn@uol.de

At the research group Wind Energy Systems, ForWind -Center for Wind Energy Research, Institute of Physics of the Carl von Ossietzky -University of Oldenburg, there is a vacant PhD position starting as soon as possible:

Research Assistant (Salary according to TV-L E13, 100%).

The research focus will be on Experimental Approach to Modelling and Control of Wind Farms.

At present, wake interaction within a wind farm is typically not adequately taken into account in current industrial controllers, resulting in lower power output and higher structural loads. Recently, the possibility to influence either energy content or direction of wakes through wind turbine control received a strong attention from the scientific community. Wind farm controllers capable of influencing and utilizing wake interaction could lead to improved operation, such as maximization of energy yield, reduction of turbine loads, or better tracking of a power reference set by a transmission system operator. However, one of the greatest challenges in designing such a controller is the lack of reliable and simple engineering wind farm models. In order to tackle this shortcoming, ForWind - Oldenburg is utilizing its state of the art research infrastructures such as the new large turbulent wind tunnel, lidar windscanners and a dedicated high performance computing cluster. Novel and far reaching research activities are offered by a close link of lab and full-scale experiments with high fidelity simulations.

Job Description

The main goals of the PhD project are to develop suitable experimental procedures for obtaining control-oriented wind farm models, and to develop and experimentally verify wind farm control algorithms based on the derived models. An experimental setup consisting of fully controllable scaled wind turbine models in a wind tunnel will be developed, with aim of enabling all relevant control/actuator capabilities of full scale wind farms in a wind tunnel. Starting from a standard wind farm control approach, methodologies for system identification will be developed, that can be performed without obstructing wind farm operation. Different levels of model and control complexity will be analysed in order to find the best solutions in respect to wind farm performance and required hardware for implementation of the developed control algorithms.

Among others, the job will comprise:
- Development and improvement of existing experimental setup
- Development and implementation of wind turbine control algorithms
- Designing and performing wind tunnel experiments
- Development of wind turbine and wind farm mathematical models
- Development of wind farm control algorithms
- Comparison of numerical and experimental results
- Support of the teaching and other general activities of the research group
Furthermore, the candidate will be given opportunities to actively improve personal, scientific and teaching skills.

Candidate Profile
Prerequisite is a qualifying university degree (diploma or master) in engineering, physics or an equivalent course of studies with extensive knowledge in control engineering. Basic expertise in wind turbine dynamics, fluid and structural dynamics is desired. Experience with Matlab/Simulink and LabVIEW programming tools, real-time control systems, and standard laboratory tools is considered a plus. Further requirements are the aptitude and willingness for pursuing a PhD with emphasis on experimental research, as well as fluently spoken and written English. Good German language skills are desired as well.

In the beginning, the employment is limited to three years. Afterwards, an extension to a total of 4 years with the opportunity of pursing a PhD is aimed at.

The University of Oldenburg is dedicated to increase the percentage of female employees in the field of science. Therefore, female candidates are strongly encouraged to apply. In accordance to A§ 21 Section 3 NHG, female candidates with equal qualifications will be preferentially considered. Handicapped applicants will be given preference in case of equal qualification. Full-time positions can be also turned into part-time ones.

Contact
Please send your preferably electronic application referenced #UN36 and appending all the usual documents (motivation letter, curriculum vitae, graduation results, job references) in one single pdf file as well as another pdf of the final thesis of your studies or relevant research papers (if available) to the Carl von Ossietzky University of Oldenburg, Institute of Physics, Research Group Wind Energy Systems, Prof. Dr. M. Kühn, Ammerländer Heerstr. 136, 26129 Oldenburg, Phone +494417985061, Email wesys.bewerbungen@forwind.de, www.forwind.de until July 10th, 2016.

Link: http://www.forwind.de/forwind/files/Position-WE-Sys-UN36-WFC.pdf

Back to the contents

6.5. PhD: University of Rhode Island, USA

Contributed by: Chengzhi Yuan, chengzhiyuan16@gmail.com

Applications are invited for PhD positions in Dr. Yuan’s group at The University of Rhode Island. The research of the prospective candidates will focus on the following multidisciplinary research projects:
2. Biomedical Systems: Intelligent learning control and dynamical pattern recognition applied to human-heart dynamics modeling, diseases diagnosis, gait recognition, and human-leg/arm prosthesis control.

Qualifications:
1. Successful candidates are required to have a strong background in Control Theory.
2. Knowledge and experience related to the robotics, power systems, autonomous vehicles, medical signal analysis and informatics are a plus.
3. Strong interest in cutting-edge scientific research, ambitions in publishing high-impact papers, and self-motivation are also very important assets of the successful candidates.
4. An earned master degree is preferred.
The positions are immediately available. Interested parties should send a CV/resume, academic transcripts, together with a letter indicating their interests and qualifications for the position, to Dr. Chengzhi Yuan at chengzhiyuan16@gmail.com. Visiting students/scholars, master-thesis students, and undergraduate students, who are interested in the research of Dr. Yuan’s group, are also encouraged to send a CV/resume to chengzhiyuan16@gmail.com.

6.6. PhD: University of Idaho, USA
Contributed by: Gautam Kumar, gautam.kumar@wustl.edu

One PhD position is immediately available in my Lab located in the Department of Chemical and Materials Engineering at the University of Idaho. Specific research topics are (1) stochastic model predictive control of non-linear dynamical systems towards application in neurophysiological systems, and (2) modeling, analysis, and control of brain circuits underlying neurophysiological and psychiatric disorders. If you are interested in working with me on novel problems at the interface of stochastic control theory and neuroscience, please send your CV to me at gautam.kumar@wustl.edu or ask for details.

Gautam Kumar
Assistant Professor
Department of Chemical and Materials Engineering
University of Idaho, Moscow, ID, USA
https://scholar.google.com/citations?user=BWgGTuwAAAAJ&hl=en

6.7. PhD: University of the Armed Forces, Germany
Contributed by: Gunther Reissig, gunther2014@reiszig.de

PhD: University of the Armed Forces, Munich, Germany
contributed by: Gunther Reissig, gunther2014@reiszig.de

PhD scholarship
Fully automated controller synthesis for UAV missions

Priv.-Doz. Dr. habil. Gunther Reissig
http://www.reiszig.de/gunther/
University of the Federal Armed Forces Munich, Germany
Department of Aerospace Engineering
Institute of Control Engineering

Open to applicants worldwide; no special security clearance necessary.

Abstraction-based controller synthesis is a relatively recent approach whose key advantage over classical synthesis methods is that it permits to solve control problems for nonlinear continuous-state plants described by ordinary differential equations in a fully automated, correct-by-construction fashion, even for rather complex control objectives and in the presence of uncertainties and disturbances. The approach relies on finite-state approximations (“abstractions”) of continuous-state plants described by ordinary differential equations. These abstractions are used as substitutes of the original plants in the synthesis process, to reduce the synthesis problem to the solution of an auxiliary, purely discrete synthesis problem. The stipendiary is expected to advance both theory and computational methods to facilitate the practical applicability of the approach to the synthesis of controllers enforcing temporal logic specifications on UAVs. The focus is on
synthesis algorithms that are both efficient and formally correct, and on the reduction of the complexity of
the resulting controllers. The project involves theoretical work, algorithm and software development, and,
on a small scale, experimental work.

The monthly scholarship is 1575 Euros (tax-free) and is generally awarded for a three-year period. The
stipendiary is entitled to participate in training and courses at the Graduate School at Technical University
Munich, or through the Graduate Program at the National Aeronautics and Space Research Center (DLR).
Additional funding for technical equipment, conferences or publications as well as for rent and public trans-
port can be granted in the amount of 6100 Euros per year. No teaching duties; stipendiary is expected to
do research full time.

Required qualifications:
* MSc degree (or equivalent, giving access to doctoral studies) in Electrical Engineering, Computer Science,
 Mathematics, or a related field. Students about to complete their MSc will also be considered.
* Excellent academic record.
* Strong theoretical background, and a strong interest in dynamical systems and control. * Proficiency in
 programming (C or Ada).
* Excellent communication skills in English.

In addition, experience in one of the following fields would be a plus: Nonlinear dynamical systems; formal
methods in control; reactive synthesis; set-valued or validated numerics; dynamic programming; game theory;
modeling and control of UAVs; professional-grade software development.

Your complete application consists of the following documents, which should be sent as a single PDF file to
the email address given below (deadline: July 15, 2016):
* CV with photo
* One-page cover letter (clearly indicating available start date, relevant qualifications, experience and moti-
 vation)
* University certificates and transcripts (both BSc and MSc degrees)
* English language certificate
* Contact details of up to three referees
* Possibly a list of publications

All documents should be in English, with the exception of university certificates and transcripts, which may
also be in German.

Priv.-Doz. Dr. habil. Gunther Reissig
Email: gunther2014@reiszig.de, Subject: PhD ref 1966

6.8. PostDoc: University of Cape Town, South Africa

Contributed by: Edward Boje, edward.boje@uct.ac.za

Post-Doctoral position in the Department of Electrical Engineering, University of Cape Town, South Africa
in one of the following topics
1) State estimation for once-through power plant boilers
2) Multivariable robust control using Quantitative Feedback Theory
3) Quantitative feedback control applied to non-linear systems

Please contact Prof. Edward Boje (edward.boje@uct.ac.za) or visit
http://www.uct.ac.za/about/intro/vacancies/external/ for further details
6.9. PostDoc: Huazhong University of Science & Technology, China
Contributed by: Ye Yuan, yy311@berkeley.edu

Prof. Ye Yuan (http://yy311.github.io) is looking for a postdoc researcher starting as soon as possible at Huazhong University of Science & Technology, Wuhan, China. The research project is broadly on control theory (system identification or optimization) or its applications to power systems.

We offer
- A competitive salary;
- Possibilities for the Postdoc to spend time at Caltech or Texas A&M to take specialized courses and work with collaborators there;
- Full contract for 2 years with the possibility of renewal up to 5 years contingent on performance.

Your Profile
- A Ph.D. degree in Control Theory, Power Systems, Mathematics, Computer Science, or a closely related field;
- An excellent background in one of the following areas: system identification, control theory, machine learning, power systems.

Interested candidates should send their CV (with names of at least two references) and a cover letter describing their specific interest and how their background fits the qualifications to Prof. Ye Yuan (yy311@berkeley.edu).

All applications will be treated in the strictest confidence.

6.10. PostDoc: Ohio State University, USA
Contributed by: Mingjun Zhang, zhang.4882@osu.edu

Post-doc position in bio-inspired robust control theory

If you were trained in theoretical control, and are interested in making unique contributions in control theory, we have a great opportunity for you. The purpose of this multi-year-sponsored position is to develop novel robust control theory inspired by natural biological systems, and implement the control algorithms for underwater robotics applications through collaborations with experimental researchers. The position requires strong background on mathematical modeling and theoretical control, and ability to extract control principles from broad natural systems through collaborations with the PI and other team members. Interested applicants should send CVs along with 2-3 publications to PI Mingjun Zhang at zhang.4882@osu.edu.

We are employing systems science and mathematics to bio-inspired engineering. The publication link below may provide you some background information about our work. We look forward to your participation to bridge the gap in bio-inspired robust control theory.

http://mjzhanglab.org.ohio-state.edu/publications.html

6.11. PostDoc: Texas A&M University at Qatar, Qatar
Contributed by: Hazem Nounou, hazem.nounou@qatar.tamu.edu

A postdoctoral position in the areas of bioinformatics and computational genomics is open at Texas A&M University at Qatar in Doha. The initial contract is for one year, extendable to several years depending on performance and availability of research funds. The start date of the position is July 1, 2016 or as soon as possible. This position is open only for the candidates who have already achieved a proven publication record in bioinformatics and computational genomics. The offer includes generous housing and health insurance.
benefits. The interested candidates are invited to email their CV and the contact information of two persons who can comment on their performance to Professors Hazem Nounou (hazem.nounou@qatar.tamu.edu) and Erchin Serpedin (email: eserpedin@qatar.tamu.edu).

Contributed by: Cornel Sultan, csultan@vt.edu

Postdoctoral position at Virginia Tech

A postdoctoral position is open at Virginia Tech, Blacksburg, VA, on the topic of model predictive control design for helicopters. The appointment is for variable length with the potential for extension up to 36 months subject to strong performance and availability of funding.

Eligibility and requirements. The ideal candidate will have strong knowledge of model predictive control. Expertise in aerospace vehicle modeling and in particular of helicopters (modeled as multibody systems) is a major plus.

Interested candidates should contact Professor Cornel Sultan (csultan@vt.edu) and include their detailed CV, statement of research and future plans, and a list of three references.

6.13. PostDoc: CReSTIC, France
Contributed by: Nadhir MESSAI, nadhir.messai@univ-reims.fr

PostDoc: CReSTIC, France

Postdoctoral Position: Distributed diagnosis of Multi-Robot Systems

Job description:
We are seeking a highly motivated postdoctoral scientist to join the CReSTIC laboratory of Reims-Champagne-Ardenne University. The post-doc will be in charge of the project “SUCRÀ©”, which deals with Multi-Robot Systems (MRS) and the research will be done in close collaboration with a PhD student at the CReSTIC.

Mission:
The objective of the postdoc study is to design feasible distributed fault detection and isolation algorithms that allows each robot to detect faults of the other robot of the team. The developed algorithms will then be analyzed, implemented and evaluated in different scenarios using a team of homogeneous robots.

Desired skills/experience:
Applicants should hold a PhD in Automatic control or Electrical Engineering. Ph.Ds in other disciplines will also be considered if relevant research experience is certified.

Applicants should have research experience in at least one of the following topics:
- Control architectures for Multi-Robot systems.
- Distributed estimation and/or diagnosis.
- Multi-agent systems.
- Hybrid systems.
- Networked systems.

Good English writing and verbal communication skills.
Knowledge of Robot Operating System (ROS) is an advantage.
Details and application procedure:
The duration of the contract is for 12 months, the yearly gross salary is 40 000 Euros and the contract conditions will be determined according to standards set by Reims-Champagne-Ardenne University. Applications should contain a motivation letter, a curriculum vita, a list of publications and the names of at least two referees that can be contacted (all documents should be in pdf format). Applications should be sent to nadhir.messai and noureddine.manamanni ({nadhir.messai, noureddine.manamanni}@univ-reims.fr) before July 10th for a contract starting Oct 1rst.

6.14. PostDoc: Lehigh University, USA
Contributed by: Nader Motee, motee@lehigh.edu

Two Postdoctoral Positions in Large-Scale and Distributed Control and Dynamical Networks. Contact: Prof. Nader Motee (motee@lehigh.edu)

Interested applicants are encouraged to apply for our open positions in Distributed Control and Dynamical Systems (DCDS) Laboratory in the Department of Mechanical Engineering and Mechanics at Lehigh University. There are several open Postdoctoral positions for Summer 2016, Fall 2016, and Spring 2017. For more information about our group and current research activities, please visit our website at www.dcds-lab.com

Candidates with strong background in probability theory, stochastic dynamical systems, and graph theory are highly encouraged to apply. Candidate with strong Control Systems background as well as Applied/Pure Mathematical background are highly encouraged to apply.

Lehigh is a premier residential research university, ranked in the top tier of national research universities each year. We are a coeducational, non-denominational, private university that offers a distinct academic environment of undergraduate and graduate students from across the globe. Located in Pennsylvania's scenic Lehigh Valley, the campus is in close proximity to both New York City and Philadelphia. Lehigh is comprised of 2,358 acres, making it one of the largest private universities in the country.

Interested applicants may contact Prof. Nader Motee (motee@lehigh.edu) with the following information: (1) one-page research statement explaining how your background fits our current research group, (2) detailed CV and list of publications, (3) copies of one or two publications. All documents should be in PDF format.

Contributed by: Antonis Papachristodoulou, antonis@eng.ox.ac.uk

Postdoctoral Research Assistant, Department of Engineering Science, University of Oxford

Grade 7: Salary in the range £30,738 - £37,768 p.a.

We seek a Postdoctoral Research Assistant to join the Control Engineering group in Engineering Science (central Oxford). The position is funded by EPSRC and is fixed-term for up to 36 months.

This post is at the interface of Synthetic Biology and Control Engineering. You should have a good first degree in engineering or mathematics and have completed or about to complete a doctorate in control engineering/dynamical systems or mathematical biology. A good publication record commensurate with your stage of career is expected. You must have the organisational skills and initiative to carry out independent research and be able to work as part of an interdisciplinary team. Experience of developing mathematical
algorithms and simulations, in modelling biological systems and in the analysis and design of feedback control systems is essential.

The successful candidate will benefit from an international collaboration with MIT, ETHZ, the Caltech and KAIST as well as Microsoft Research, Cambridge and will become part of the growing and flourishing Synthetic Biology community in Oxford. The work will be partly mathematical, partly computational and will involve close interaction with researchers in the biological sciences.

Informal enquiries may be addressed to Professor Antonis Papachristodoulou (email: antonis@eng.ox.ac.uk). Further information can be found at www.eng.ox.ac.uk/jobs/home

You will be required to upload a covering letter/supporting statement, including a brief statement of research interests (describing how past experience and future plans fit with the advertised position), CV and the details of two referees as part of your online application.

Only applications received before 12.00 midday on 8 July 2016 can be considered.

The Department holds an Athena Swan Bronze award, highlighting its commitment to promoting women in Science, Engineering and Technology.

6.16. PostDoc: UT-Dallas, USA

Contributed by: Reza Moheimanim, Reza.Moheimani@utdallas.edu

We are seeking a postdoctoral research fellow to join our multidisciplinary research group, based in the Laboratory for Dynamics and Control of Nanosystems at UT-Dallas. The applicants are expected to have a PhD in a relevant area (or be close to completion), have a strong analytical background and be familiar with advanced control system design techniques. Familiarity with analog electronics design and rapid prototyping systems is a major plus. Familiarity with scanning probe techniques is highly valued.

To be considered, the applicants should send their CVs including a list of publications and names and addresses of three referees to D. Reza Moheimani (contact email: Reza.Moheimani@utdallas.edu).

6.17. PostDoc: KTH, Sweden

Contributed by: Håkan Hjalmarsson, hakan.hjalmarsson@ee.kth.se

2 PostDocs: KTH, Sweden

The Department of Automatic Control at KTH has two open postdoc positions, expected to take the lead in the development of smart feed designs for biopharmaceutical production and Economic MPC for paper manufacturing. A strong background in process control and/or system identification is required, with experience from bioprocesses considered a bonus. The work will be carried out in close collaboration with our industrial partners ABB Process Automation, ABB Corporate Research, BillerudKorsnäs, GE Healthcare and Cobra Biologics. The positions are initially for one year, but can be extended to two years. For further information contact Prof. Håkan Hjalmarsson (hakan.hjalmarsson@ee.kth.se) or Prof. Elling Jacobsen (Jacobsen@kth.se).

6.18. PostDoc: Universitat Politecnica de Valencia, Spain

Contributed by: Ramon Blasco-Gimenez, r.blasco@ieee.org
The Institute of Automation and Industrial Informatics of the Universitat Politecnica de Valencia (Spain) welcomes applications for a Post-doctoral position on control of large wind power plants for the integration in HVDC grids.

The successful candidate will carry out his/her research work within the largest European H2020 research project on Energy.

https://www.promotion-offshore.net

The duties of the appointed candidate will consist on the development, detailed analysis and validation of control strategies for wind turbines and HVDC converters when connected to HVDC grids by means of Diode Rectifier HVDC stations.

Interested candidates with a demonstrated track record in control of HVDC systems, wind power plants, power electronic converters and/or power systems should send a short resume, along with references to relevant publications, to r.blasco@ieee.org

Your Profile

Hold a Ph.D. degree in Control, Power Electronics or Power Systems, with expertise in one or more of the aforementioned fields.

We offer

Full contract for 1 year with the possibility of renewal up to 3 years contingent on performance.

Due to schedule constraints, only applications from EU Nationals or EU Permanent Residents will be considered.

6.19. Faculty: Wallenberg Autonomous Systems Program, Sweden

Contributed by: Karl-Erik Arzen, karlerik@control.lth.se

4 Professorships in Autonomous Systems and/or Software in Sweden

Wallenberg Autonomous Systems Program (WASP) is Sweden’s largest individual research program ever, and provides a platform for academic research and education, fostering interaction with Sweden’s leading technology companies. The program addresses research on autonomous systems acting in collaboration with humans, adapting to their environment through sensors, information and knowledge, and forming intelligent systems of systems. Software is the main enabler in autonomous systems, and is an integrated research theme of the program. WASP aims to build a world leading platform for academic research that interacts with leading companies to develop knowledge and competence for the future.

WASP will strengthen, expand, and renew the national competence through new strategic recruitments, a challenging research program, a national graduate school, and collaboration with industry.

We are now offering four strongly financed Professorships at the coordinating universities Chalmers University of Technology, Linköping University, Lund University, and KTH Royal Institute of Technology. The positions are not specified to specific topics which means that applications from all research areas of WASP are welcome. The positions include post-doc and graduate student funding, and access to well-financed planned autonomous research arenas.

Applications are directed to WASP (http://wasp-sweden.org/application-for-wasp-professorship) and are further subject to a decision process at the respective university.

We look forward to your application!

For general information on WASP: http://wasp-sweden.org
For general information on working at the involved universities:

Chalmers
KTH
Linköping University
Lund University

For further information on the positions, please contact Lars Nielsen, wasp_professorship@wasp-sweden.se, +46 13 28 11 00.

Application deadline: September 30th, 2016, 23:59 CEST

6.20. Faculty: University of Groningen, Netherlands
Contributed by: Claudio De Persis, c.de.persis@rug.nl

University of Groningen
Engineering and Technology Institute Groningen
Tenure Track position in Optimization and Control

Organisation
Since its foundation in 1614, the University of Groningen has enjoyed an international reputation as a dynamic and innovative centre of higher education offering high-quality teaching and research. Balanced study and career paths in a wide variety of disciplines encourage currently more than 30,000 students and researchers to develop their own individual talents. Belonging to the best research universities in Europe and the top 100 universities in the world (see our ranking: http://www.rug.nl/about-us/where-do-we-stand/rankings), the University of Groningen is truly an international place of knowledge.

Job description
The successful candidate is expected to develop research in areas at the intersection of optimization and dynamical control systems. These areas include but are not limited to differential games, distributed optimization, optimization and control of network systems, optimal control. Other areas might be considered as well in cases of applications by exceptional applicants. Examples of application areas where the candidate should be willing to work include smart cities, transportation systems, flow networks, energy systems, supply chain networks, optimal actuator/sensor placement. The candidate will be embedded in the SMS-Cyberphysical System group in which research in cyberphysical systems, dynamical networks, nonlinear systems, hybrid and switched control is conducted, with applications ranging from smart grids, to data centers, water and heat networks, as well as adaptive optics.

Qualifications
Candidates have:
- a Ph.D. degree in relevant areas such as electrical engineering, systems and control, mechanical engineering, computer engineering, operations research;
- two or more years of experience in a post-doctoral capacity or experience at another educational institution by the time the candidate is hired for the position;
- excellent research qualities, as evidenced by a publication record in international peer-reviewed journals and renowned conferences, and a relevant international network;
- research, teaching and organizational experience appropriate to career stage;
- a working knowledge of the English language;
- evidence of experience in proposal writing or successful acquisition of external funding appropriate to career stage;
Candidates are:
- team players with good communications skills;
- willing to fulfill the requirements for the University Teaching Qualification;
- willing to learn the Dutch language.

Conditions of employment
The appointment will be initially for a maximum of 6 years at the level of tenure track assistant professor with a gross monthly salary dependent on qualifications and work experience from EUR 3,259 up to a maximum of EUR 5,070 (CAO-NU salary scales 11 or 12) gross per month for a full-time position. After 5 years there will be an assessment of performance based on established criteria. If the outcome of the assessment is positive, the assistant professor will be promoted to associate professor with tenure. There will be another assessment at the end of a further 4-7 -year period for the promotion to full professor.

In addition to the primary salary the University offers 8% holiday allowance and an end-of-year bonus of 8.3%.

The University of Groningen provides career services for partners of new faculty members moving to Groningen.

The University of Groningen has adopted an active policy to increase the number of female scientists across all disciplines of the university. Therefore, female candidates are especially encouraged to apply.

Applications
Interested candidates are invited to submit a complete application including:
- A letter of motivation;
- A Curriculum Vitae, including a list of publications;
- A list of five self selected ‘best papers’;
- A statement about teaching goals and experience and a description of scientific interest and plans;
- The names of three references complete with title and contact information.

You may apply for this position by sending an email to secsms@rug.nl with all the required documents attached. Deadline 31 August 2016.

Information
For information you can contact: Prof. C. De Persis, c.de.persis@rug.nl (please do not use for applications)

More information can be found on
http://www.rug.nl/research/sms
http://www.rug.nl/research/enteg

6.21. Faculty: Norwegian University of Science and Technology, Norway
Contributed by: Morten Breivik, morten.breivik@ntnu.no

The Norwegian University of Science and Technology (NTNU, http://www.ntnu.edu/) is establishing the world’s first professorship in Big Data Cybernetics in collaboration with KONGSBERG (http://kongsberg.com), combining the fields of automatic control and multivariate data modelling.

For the successful applicant, this represents a unique opportunity to play a central role in the development of a new interdisciplinary field. The position will be affiliated with the Department of Engineering Cybernetics (Institutt for teknisk kybernetikk - ITK, http://www.ntnu.edu/itk) at NTNU’s Faculty of Information Technology, Mathematics and Electrical Engineering.
ITK has 17 full-time professors, 11 adjunct professors, about 10 postdocs and researchers as well as 70 PhD candidates. Approximately 100 MSc candidates graduate annually from the three study programs in cybernetics, which comprise about 650 students in total. The department is involved in numerous research projects and centers, including the Centre of Excellence for Autonomous Marine Operations and Systems (NTNU AMOS, http://www.ntnu.edu/amos).

The new field Big Data Cybernetics is envisioned to combine methods from automatic control and multivariate data modelling in order to discover systematic structures in the spatial, temporal and property-profile domains, and to convert these structures into quantitative, human-interpretable information.

The main goal is to translate “big data” from a large number of sensor channels into “smart data” represented by a combination of theory-driven and data-driven models, by combining science’s prior knowledge with nature’s unexpected patterns to identify the relevant structures and develop interpretable and useful models. The overlap between cybernetic subspace identification and chemometric partial-least-squares regression could for instance be a fruitful common ground for the desired high-dimensional, spatio-temporal modelling. The outputs from such models shall be intuitively understandable by humans, who then can use their background knowledge and creativity for further refinement and development. This means that black-box modelling, such as e.g. artificial neural networks or support vector machines, are not the focus of Big Data Cybernetics.

The applicants’ methodological basis should include theory and tools for describing scientific knowledge in terms of both first-principles mathematical models as well as unexpected cluster and subspace structures in large data sets. It is required to document solid competence in at least one of the two fields of automatic control and multivariate data modelling, and the applicant must demonstrate a strong interest in merging these two fields. Knowledge in system identification, nonlinear dynamics, feedback control and self-organization, signal processing, image analysis, visualization or machine learning is an advantage. Thus, several different scientific backgrounds are relevant for this new interdisciplinary field.

The candidate will join a research community at ITK which was rated “excellent from an international perspective” in the Norwegian Research Council’s evaluation of 53 ICT communities in Norway in 2012, as one of three ICT communities to receive such a rating in the Norwegian university and college sector.