E-LETTER on Systems, Control, and Signal Processing
Issue 346
June 2017

Editor: Jianghai Hu
School of Electrical and Computer Engineering
Purdue University
465 Northwestern Ave
West Lafayette, IN 47907
Tel: +1 (765) 496-2395
Fax: +1 (765) 494-3371

Welcome to the 346 issue of the Eletter, available electronically here.
To submit new articles, go “Article Submissions” on the Eletter website.
To unsubscribe, please send an email with the subject line “Eletter Unsubscribe”.

The next Eletter will be mailed out at the beginning of July 2017.

Contents

1. IEEE CSS Headlines
 1.1 IEEE Control Systems Society Video Clip Contest: Open for Submissions
 1.2 IEEE Control Systems Society Technically Cosponsored Conferences
 1.3 IEEE Control Systems Society Publications Content Digest
 1.4 IEEE Transactions on Automatic Control

2. Summer Schools
 2.1 Summer School on “Approximation of Large-Scale Dynamic Models”
 2.2 DISC Summer School on “A Systems and Control Perspective on Privacy, Safety, and Security in Large-Scale Cyber-Physical Systems”

3. Books
 3.1 Control of Multiple Robots Using Vision Sensors
 3.2 Real-time Monitoring and Operational Control of Drinking-Water Systems
 3.3 Uncertain Rule-Based Fuzzy Systems Introduction and New Directions, 2nd Edition
 3.4 Advanced Flight Dynamics with Elements of Flight Control

4. Journals
 4.1 Contents: Automatica
 4.2 Contents: IEEE/CAA Journal of Automatica Sinica
 4.3 Contents: Systems & Control Letters
 4.4 Contents: European Journal of Control
 4.5 Contents: Annual Reviews in Control
 4.6 Contents: Journal of Process Control
 4.7 Contents: Journal of Process Control
 4.8 Contents: Nonlinear Analysis: Hybrid Systems
 4.9 Contents: ISA Transactions
 4.10 Contents: Control Engineering Practice
 4.11 Contents: Control Theory and Technology
 4.12 Contents: Asian Journal of Control
 4.13 Contents: International Journal of Control, Automation, and Systems
4.14 CFP: IEEE Transactions on Control Systems Technology

5. Conferences
5.1 International Symposium on Computer Performance, Modeling, Measurements and Evaluation
5.2 Asian Control Conference
5.3 Australian & New Zealand Control Conference
5.4 International Conference on Control, Automation and Systems
5.5 Workshop on Networks and Control
5.6 Workshop on Brain Dynamics and Neurocontrol Engineering
5.7 IFAC World Congress Workshop on “Process Data Analytics”

6. Positions
6.1 PhD: Université Laval, Canada
6.2 PhD: University Grenoble Alpes, France
6.3 PhD: VERIMAG, France
6.4 PhD: University of Groningen, the Netherlands
6.5 PhD: Inria, France
6.6 PhD: University of Groningen, the Netherlands
6.7 PhD: University of Groningen - University of Twente, the Netherlands
6.8 PhD: University of Grenoble, France
6.9 PhD: WASP, Sweden
6.10 PhD: LAAS Lab, France
6.11 PhD: University of New South Wales, Australia
6.12 PhD: University of Bordeaux, France
6.13 PhD/PostDoc: New York University Abu Dhabi, UAE
6.14 PostDoc: Shanghai Jiao Tong University, China
6.15 PostDoc: UIUC, USA
6.16 PostDoc: Centre for Energy Systems Integration, UK
6.17 PostDoc: Ghent University Global Campus, South Korea
6.18 PostDoc: CNRS – CentraleSupélec – Univ. Paris-Sud – Univ. Paris-Saclay, France
6.19 PostDoc: Huazhong University of Science & Technology, China
6.20 PostDoc: University of Exeter, UK
6.21 PostDoc: KTH, Sweden
6.22 PostDoc: Technical University of Munich, Germany
6.23 PostDoc: University of California at Santa Cruz, USA
6.24 PostDoc: United States Naval Academy, USA
6.25 Faculty: Harbin Institute of Technology, Shenzhen, China
6.26 Faculty: Zhejiang University of Technology, China
6.27 Automation Engineer: Sunnyvale, CA, USA
1. IEEE CSS Headlines

1.1. IEEE Control Systems Society Video Clip Contest: Open for Submissions
 Contributed by: Magnus Egerstedt, magnus@gatechedu

The 2017 IEEE Control Systems Society Video Clip Contest is now open for business!
Submissions are now accepted for the 3rd IEEE CSS Video Clip Contest (see http://www.ieeecss.org/video-contest). The purpose of this competition is to promote control theory and automatic control to a broader audience through compelling short video clips. The videos could for example focus on a particular topic or on the field in general, with the only constraint being that the video promotes the field in a visually compelling and effective manner.

The schedule for the video clip contest is:
April 15 - Open for submission
July 1 - Deadline for submitting videos
July 15 - Winners are announced

Instructions for submitting the videos and eligibility information is available at the Video Clip Contest website:

All videos are judged by a jury consisting of IEEE CSS researchers, and the best three videos will receive prizes for contributing to the contest: The 1st, 2nd place, and 3rd places are awarded $1000, $500, and $250, respectively. Moreover, the 1st place winner is invited to participate in the 2017 IEEE Conference on Control Technology and Applications (http://ccta2017.ieeecss.org) on Kohala Coast, Hawaii. The winner, or the Team Leader of the winning team, will be awarded one free conference registration for the CCTA 2017 as well as reimbursement for reasonable travel expenses - to be coordinated with the Video Clip Contest Chair in advance. The best video clips will be presented to the public during an award ceremony at the CCTA 2017.

Looking forward to seeing your video clips!
Magnus Egerstedt (Contest Chair)
Angela Schoellig (Jury Chair)

1.2. IEEE Control Systems Society Technically Cosponsored Conferences
 Contributed by: Luca Zaccarian, CSS AE Conferences, zaccarian@laas.fr

The following conferences have been recently included in the list of events technically cosponsored by the IEEE Control Systems Society:

1.3. IEEE Control Systems Society Publications Content Digest
Contributed by: Elizabeth Kovacs, ekovacs2@nd.edu

Each issue offers readers a rapid means to survey and access the latest peer-reviewed papers of the IEEE Control Systems Society. We also include links to the Society’s sponsored Conferences to give readers a preview of upcoming meetings.

1.4. IEEE Transactions on Automatic Control
Contributed by: Elizabeth Kovacs, ekovacs2@nd.edu

Table of Contents
IEEE Transactions on Automatic Control
Volume 62 (2017), Issue 6 (June)

Please note that the contents of the IEEE Transactions on Automatic Control, together with links to the abstracts of the papers may be found at the TAC web site: http://www.nd.edu/ieeetac/contents.html

Papers
- Model-Free Plant Tuning, F. Blanchini, G. Fenu, G. Giordano, F. A.Pellegrino p. 2623
- Quickest Change Detection with Observation Scheduling, X. Ren, K. H. Johansson, L. Shi p. 2635
- Simple and Robust Experiment Design for System Identification using Fractional Models, S. Abrashov, R. Malti, M. Moze, X Moreau, F. Aioun, F. Guillemard p. 2648
- Linear Quadratic Regulation of Switched Systems Using Informed Policies, D. Antunes, W.P.M.H. Heemels p. 2675
- An Actor-Critic Algorithm with Second-Order Actor and Critic, J. Wang, I. Ch. Paschalidis p. 2689
- Distributed Saddle-Point Subgradient Algorithms with Laplacian Averaging, D. Mateos-Nunez, J. Cortes p. 2720
- Global Stability Results for Switched Systems Based on Weak Lyapunov Functions, J. L. Mancilla-Aguilar,
H. Haimovich, R. A. Garcia p. 2764
- Feedback Controller Norm Optimization for Linear Time Invariant Descriptor Systems with Pole Region Constraint, S. Datta p. 2794
- Online Learning of Feasible Strategies in Unknown Environments, S. Paternain, A. Ribeiro p. 2807
- Verification of State-Based Opacity Using Petri Nets, Y. Tong, Z. Li, C. Seatzu, A. Giua p. 2823

Technical Notes and Correspondence
- Robust Kalman Filtering under Model Perturbations, M. Zorzi p. 2902
- Stabilization of Nonlinear Time-Varying Systems through a New Prediction Based Approach, F. Mazenc, M. Malisoff p. 2908
- Weighted Consensus Protocols Design based on Network Centrality for Multi-agent Systems with Sampled-data, M. Park, O. Kwon, A. Seuret p. 2916
- On Exploring the Domain of Attraction for Bilateral Teleoperator Subject to Interval Delay and Saturated P+d Control Scheme, C-C. Hua, X. Yang, J. Yan, X-P. Guan p. 2923
- Fault-Tolerant Control of Linear Quantum Stochastic Systems, S. Wang, D. Dong p. 2929
- Periodic Optimal Control, Dissipativity and MPC, M. Zanon, L. Grune, M. Diehl p. 2943
- In-Block Controllability of Affine Systems on Polytopes, M. K. Helwa, P. E. Caines p. 2950
- Stabilization of Switched Linear Systems with Quantized Output and Switching Delays, M. Wakaiki, Y. Yamamoto p. 2958
- Sliding Mode Control of Constrained Nonlinear Systems, G. P. Incremona, M. Rubagotti, A. Ferrara p. 2965
- A Convex Characterization of Multidimensional Linear Systems Subject to SQI Constraints, S. Sabau, N. C. Martins, M. C. Rotkowitz p. 2981
- On Stock Trading Via Feedback Control When Underlying Stock Returns Are Discontinuous, M. H. Baumann p. 2987
- Output Regulation of Boolean Control Networks, H. Li, L. Xie, Y. Wang p. 2993
- Output-Feedback Multivariable Global Variable Gain Super-Twisting Algorithm, P. V. N. M. Vidal, E. V. L. Nunes, L. Hsu p. 2999
- The Observability Radius of Networks, G. Bianchin, P. Frasca, A. Gasparri, F. Pasqualetti p. 3006
- Extremum-seeking in Singularly Perturbed Hybrid Systems, R. J. Kutadinata, W. H. Moase, C. Manzie p. 3014
- Minimum Resource Commitment for Reachability Specifications in a Discrete Time Linear Setting, R. Vignali, M. Prandini p. 3021
- Some Extensions on the Bounded Real Lemma for Positive Systems, J. Shen, J. Lam p. 3034
- Cooperative Output Regulation of Heterogeneous Nonlinear Multi-Agent Systems with Unknown Control Directions, M. Guo, D. Xu, L. Liu p. 3039
- Quadratic Model Predictive Control with l0-input Constraint, R. P. Aguilera, G. Urrutia, R. Delgado, J. C. Agüiero, D. Dolz p. 3068
- A Solution for the Partitioning Problem in Partition-Based Moving-Horizon Estimation, R. Schneider p.3076
- Robust Almost Global Splay State Stabilization of Pulse Coupled Oscillators, F. Ferrante, Y. Wang p. 3083

2. Summer Schools

2.1. Summer School on “Approximation of Large-Scale Dynamic Models”
Contributed by: Antoneta Iuliana BRATCU, antoneta.bratcu@gipsa-lab.fr

Summer School on “APPROXIMATION OF LARGE-SCALE DYNAMIC MODELS” - registration is now open
Location and Date: Grenoble (France) - September 11 to 15, 2017
Scientific Chair: Charles POUSSOT-VASSAL (ONERA, Toulouse)
Website: http://www.gipsa-lab.fr/summerschool/auto2017/
Pre-registration link:
https://www.azur-colloque.fr/DR11/inscription/preinscription/132
For French participants:
Early registrations are encouraged (the number of participants is limited to 50).
Pre-registration dead-line is June 30th 2017.
Registration dead-line is July 13th 2017.
This Summer School aims at presenting the main mathematical tools and model approximation algorithms, in order to bridge the gap between complexity and representativeness required in control design, analysis,
simulation and optimisation. To this end, domain experts will be present to share their expertise and cutting-edge research results. The Summer School is mainly intended to PhD students, researchers and scholars interested in applying approximation of large-scale dynamic models, being meanwhile open to industrial participants. Basic knowledge in automatic control and mathematics will be useful.

Speakers:
Thanos ANTOULAS (Rice University, Houston, Texas, USA)
Sara GRUNDEL (Max Planck Institute, Magdeburg, Germany)
Serkan GUGERCIN (Virginia Tech, Blacksburg, USA)
Christian HIMPE (Münster University, Münster, Germany)
Martine OLIVI (INRIA Sophia Antipolis, France)
Charles POUSSOT-VASSAL (ONERA, Toulouse, France)
Pierre VUILLEMIN (ONERA, Toulouse, France)

For further information, please contact Antoneta Iuliana BRATCU(antoneta.bratcu@gipsa-lab.fr)

2.2. DISC Summer School on “A Systems and Control Perspective on Privacy, Safety, and Security in Large-Scale Cyber-Physical Systems”
Contributed by: Martha Otte, m.w.otte@tudelft.nl

From July 3-6, 2017 the DISC Summer School ”A Systems and Control Perspective on Privacy, Safety, and Security in Large-Scale Cyber-Physical Systems” will take place at NH Atlantic, the Hague (Kijkduin), The Netherlands.

The increasing adoption of cyber-physical systems (CPS) and internet-of-things (IoT) introduces new control problems beyond the traditional tasks of stabilization and optimization. Some of the control challenges are related to the operation of future, highly interconnected CPS in a safety- or mission-critical environment, and to the protection of security and privacy where sensor and actuator data, and other control parameters are communicated in a networked CPS. Recent denial-of-service attacks to critical infrastructure and several accidents involving autonomous cars are some of the instances where new theoretical developments in the systems and control field are needed.

In this summer school program, we will present recent developments towards this endeavor and particular attention will be given to:
-differential privacy concept in a control and networked systems context
-analysis and design of resilient and secure control systems
-safety control of CPS

Keynote lectures will be given by: -Fabio Pasqualetti, University of California, USA
-Jerome Le Ny, Polytechnique Montreal, Canada
-Rafael Wisniewski, Aalborg University, Denmark
-Yiannis Papadopoulos, University of Hull, United Kingdom
-Henrik Sandberg, KTH Royal Institute of Technology, Sweden
-Manuel Mazo, Delft University of Technology, NL
-Peyman Mohajerin Esfahani, Delft University of Technology, NL
-Claudio de Persis, University of Groningen, NL
-Rene Pluis, Cisco Systems International BV

For more information about the program and registration please visit http://disc.tudelft.nl/education/summer-school/summer-school-2017/
3. Books

3.1. Control of Multiple Robots Using Vision Sensors
Contributed by: Yasmin Brookes, yasmin.brookes@springer.com

Control of Multiple Robots Using Vision Sensors
by Miguel Aranda, Gonzalo López-Nicolás, Carlos Sagüés
ISBN: 978-3-319-57827-9
May 2017, Springer
Hardcover, 187 pages, $99.00/euro 86.99

This monograph introduces novel methods for the control and navigation of mobile robots using multiple-1-d-view models obtained from omni-directional cameras. This approach overcomes field-of-view and robustness limitations, simultaneously enhancing accuracy and simplifying application on real platforms. The authors also address coordinated motion tasks for multiple robots, exploring different system architectures, particularly the use of multiple aerial cameras in driving robot formations on the ground. Again, this has benefits of simplicity, scalability and flexibility. Coverage includes details of:

- a method for visual robot homing based on a memory of omni-directional images;
- a novel vision-based pose stabilization methodology for non-holonomic ground robots based on sinusoidal-varying control inputs;
- an algorithm to recover a generic motion between two 1-d views and which does not require a third view;
- a novel multi-robot setup where multiple camera-carrying unmanned aerial vehicles are used to observe and control a formation of ground mobile robots; and
- three coordinate-free methods for decentralized mobile robot formation stabilization.

The performance of the different methods is evaluated both in simulation and experimentally with real robotic platforms and vision sensors.

Control of Multiple Robots Using Vision Sensors will serve both academic researchers studying visual control of single and multiple robots and robotics engineers seeking to design control systems based on visual sensors.

Contents
1 Introduction
1.1 Motivation and Background
1.1.1 Computer Vision and Multiple-View Geometry
1.1.2 Visual Control of Mobile Robots
1.1.3 Multirobot Systems
1.1.4 Applications of Vision-Based Multirobot Control
1.2 Summary of Contributions
1.3 Outline of the Monograph

2 Angle-Based Navigation Using the 1D Trifocal Tensor
2.1 Introduction
2.1.1 Related Work
2.1.2 Contributions Relative to the Literature
2.2 Computation of the Reference Set Angles
2.2.1 Angles from the 1D Trifocal Tensor
2.2.2 Complete Solution of Four-View Sets
2.3 Homing Strategy
2.3.1 Control Law
2.3.2 Method Implementation
2.3.3 Stability Analysis
2.4 Experimental Results
2.4.1 Simulations
2.4.2 Experiments with Real Images
2.5 Discussion
2.5.1 Comparison with Existing Work
2.5.2 Practical and Performance-Related Considerations
2.5.3 Summary
3 Vision-Based Control for Nonholonomic Vehicles
3.1 Introduction
3.2 System Model
3.3 Sinusoidal Input-Based Control Scheme
3.3.1 Evolution of the System
3.3.2 Feedback Estimation of Control Parameters
3.4 1D Trifocal Tensor-Based Depth Correction
3.5 State Estimation Through the 1D Trifocal Tensor
3.6 Method Implementation
3.7 Stability Analysis
3.8 Experimental Results
3.8.1 Simulations
3.8.2 Experiments on a Real Robot
3.9 Discussion
3.9.1 Practical Considerations
3.9.2 Method Properties and Possible Uses
3.9.3 Summary
4 Controlling Mobile Robot Teams from 1D Homographies
4.1 Introduction
4.2 Planar Motion Estimation Using 1D Homographies
4.2.1 Motion from the 2D Homography
4.2.2 Motion from the 1D Homography
4.2.3 Experiments on Planar Motion Estimation
4.3 1D Homography-Based Multirobot Formation Control
4.3.1 Use of 1D Homographies for Multirobot Control
4.3.2 State Observer
4.3.3 Control Strategy
4.3.4 Method Implementation
4.3.5 Simulation Results for the Multirobot Control Scheme
4.4 Discussion
5 Control of Mobile Robot Formations Using Aerial Cameras
5.1 Introduction
5.2 Homography-Based Framework
5.2.1 Desired Image Points for Minimal Cost
5.2.2 Desired Homography Parametrization and Computation
5.3 Multicamera Coordinated Visual Control
5.3.1 Multicamera Framework and Coordinate Systems
5.3.2 Visual Control Law
5.3.3 Method Implementation
5.3.4 Stability Analysis
5.4 Camera Motion Control
5.5 Simulations
5.6 Experiments with Real Robots
5.7 Discussion

6 Coordinate-Free Control of Multirobot Formations
6.1 Introduction
6.2 Coordinate-Free Stabilization of a Distributed Networked Team
6.2.1 Problem Formulation
6.2.2 Coordinate-Free Control Strategy
6.2.3 Stability Analysis
6.2.4 Simulations
6.3 Distributed Formation Stabilization in Local Coordinates
6.3.1 Problem Formulation and Background
6.3.2 Control Strategy
6.3.3 Stability Analysis
6.3.4 Discussion of Valid Formation Graph Topologies
6.3.5 Simulations
6.4 Enclosing a Target in 3D Space via Coordinate-Free Formation Control
6.4.1 Problem Formulation
6.4.2 Target Enclosing Strategy
6.4.3 Stability Analysis
6.4.4 Method Properties
6.4.5 Simulations
6.5 Discussion

7 Conclusions and Directions for Future Research
Index

3.2. Real-time Monitoring and Operational Control of Drinking-Water Systems
Contributed by: Yasmin Brookes, yasmin.brookes@springer.com

Real-time Monitoring and Operational Control of Drinking-Water Systems
by V. Puig, C. Ocampo-Martínez, R. Pérez, G. Cembrano, J. Quevedo, T. Escobet (Eds.)
ISBN: 978-3-319-50750-7
June 2017, Springer
Hardcover, 428 pages, $179.00/euro 149.99
This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees.

The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain. The proposed approaches and tools cover:

- decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves—and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;
- decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection and diagnosis techniques and using information from hundreds of flow, pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators; and
- consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns, providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level.

Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increased population, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.

Contents

1 Real-Time Monitoring and Control in Water Systems
1.1 The Water Need
1.2 Water Cycle and Networks
1.3 Real-Time Monitoring and Control
1.4 State of the Art
1.4.1 Real-Time Monitoring of Water Networks
1.4.2 Real-Time Optimal Control of Water Networks
1.5 Outline of the Book

References

2 Case Studies
2.1 Introduction
2.2 Case Studies
2.3 Water Transport Network
2.4 Water Distribution Network
2.5 Software

References

Part I Modelling

3 Modelling and Simulation of Drinking-Water Networks
3.1 Introduction
3.2 Problem Statement
3.3 Proposed Approach
3.3.1 Hydraulic Equations
3.3.2 Water Consumptions
3.3.3 Network Equations Solver
3.3.4 Chlorine Decay Modelling
3.3.5 Network Skeletonization
3.4 Simulation and Results
3.4.1 Matrix Model
3.4.2 Skeletonization
3.4.3 Simulation
3.5 Conclusions
References

4 Parameter Estimation: Definition and Sampling Design
4.1 Introduction
4.1.1 Identifiability
4.1.2 Sampling Design
4.2 Problem Statement
4.3 Proposed Approach
4.3.1 Parameter Definition
4.3.2 Sampling Design
4.4 Simulations and Results
4.4.1 Exemplification
4.4.2 Demand Components' Model for a Real Network
4.5 Conclusions
References

5 Parameter Estimation: Online Calibration
5.1 Introduction
5.1.1 Calibration Methods
5.1.2 Uncertainty
5.2 Problem Statement
5.3 Proposed Approach
5.4 Simulations and Results
5.4.1 Academic Example
5.4.2 Real DMA
5.5 Conclusions
References

6 Demand Forecasting for Real-Time Operational Control
6.1 Introduction
6.2 Problem Statement
6.3 Proposed Approach
6.3.1 Double-Seasonality ARIMA Models
6.3.2 Daily Seasonality ARIMA Model with Hourly Pattern
6.3.3 Basic Structural Model
6.3.4 Exponential Smoothing Method
10.1 Introduction
10.2 Problem Statement
10.3 Proposed Methodology
10.3.1 Data Validation
10.3.2 Data Reconstruction
10.3.3 Software for Data Validation and Reconstruction
10.4 Simulation and Results
10.5 Conclusions
References

11 Fault Diagnosis
11.1 Introduction
11.2 Problem Statement
11.3 Proposed Approach
11.3.1 Fault Diagnosis Architecture
11.3.2 ARR Generation
11.3.3 Fault Detectability and Isolability
11.3.4 Fault Detection Implementation
11.3.5 Fault Isolation Implementation
11.4 Simulations and Results
11.4.1 Barcelona Water Transport Network
11.4.2 WTN Modelling
11.4.3 ARR Generation
11.4.4 Structural Fault Detectability and Isolability Analysis
11.4.5 FD Implementation
11.4.6 Results
11.5 Conclusions and Research Perspectives
References

Part III Real-Time Control

12 Model Predictive Control of Water Networks Considering Flow
12.1 Introduction
12.2 Problem Statement
12.2.1 Operational Control of Water Networks
12.2.2 Operational Control of Water Network Using MPC
12.3 Proposed Approach
12.3.1 Modelling
12.3.2 Control-Oriented Model
12.3.3 Control Criteria
12.3.4 MPC Problem Formulation
12.4 Simulations and Results
12.4.1 Test Scenarios
12.4.2 Results and Discussion
12.4.3 Complementary Comments
12.5 Conclusions
References
13 Model Predictive Control of Water Networks Considering Flow and Pressure

13.1 Introduction

13.2 Problem Statement

13.2.1 Control-Oriented Model Including Pressure

13.2.2 Nonlinear MPC Strategy

13.2.3 NMPC Formulation

13.3 Proposed Solution

13.3.1 Mixed-Integer NMPC Including Discrete ON/OFF Pump Scheduling

13.3.2 Two-Layer Optimal Control Strategy

13.4 Simulation Results

13.4.1 Case Study Description

13.4.2 Results

13.5 Conclusions

References

14 Stochastic Model Predictive Control for Water Transport Networks with Demand Forecast Uncertainty

14.1 Introduction

14.2 Problem Formulation

14.3 Chance-Constrained MPC

14.4 Tree-Based MPC

14.5 Numerical Results

14.5.1 Performance Comparison on a Small-Scale System

14.5.2 Performance Assessment of CC-MPC on a Large-Scale System

14.6 Conclusions

References

15 Fault-Tolerant Model Predictive Control of Water Transport Networks

15.1 Introduction

15.2 Problem Statement

15.2.1 Flow-Based Control-Oriented Model

15.2.2 Statement of the Control Problem

15.2.3 Inclusion of Fault-Tolerant Capabilities

15.3 Proposed Approach

15.3.1 Admissibility Analysis Algorithms

15.3.2 Analyses Based on the System Graph

15.3.3 Analyses Based on the System Mathematical Model

15.3.4 Reliability Analysis Algorithm

15.3.5 MPC Redesign to Preserve Reliability

15.4 Simulations and Results

15.4.1 Case Study Description

15.4.2 Results

15.4.3 Discussion

15.5 Conclusions

References

16 Partitioning Approaches for Large-Scale Water Transport Networks

16.1 Introduction

16.2 Problem Statement
3.3. Uncertain Rule-Based Fuzzy Systems Introduction and New Directions, 2nd Edition

Contributed by: Mojtaba Ahmadieh Khanesar, ahmadieh@ieee.org

Uncertain Rule-Based Fuzzy Systems Introduction and New Directions, 2nd Edition
by Prof. Jerry M. Mendel
ISBN: 978-3-319-51369-0
2017, Springer
Paperback, 684 pages, $119.00

Table of Content:

Chapter 1: Type-1 Fuzzy Sets and Fuzzy Logic
Chapter 2: Type-1 Fuzzy Systems
Chapter 3: Type-1 Fuzzy Systems: Design Methods and Applications
Chapter 4: Sources of Uncertainty
Chapter 5: Type-2 Fuzzy Sets
Chapter 6: Working with Type-2 Fuzzy Sets
Chapter 7: Type-Reduction
Chapter 8: Interval Type-2 Fuzzy Systems
Chapter 9: Interval Type-2 Fuzzy Systems: Design Methods and Applications
Chapter 10: General Type-2 Fuzzy Systems

- Presents fully updated material on new breakthroughs in human-inspired rule-based techniques for handling real-world uncertainties
- Allows those already familiar with type-1 fuzzy sets and systems to rapidly come up to speed to type-2 fuzzy sets and systems
- Features complete classroom material including end-of-chapter exercises, a solutions manual, and three case studies – forecasting of time series to knowledge mining from surveys and PID control.

The second edition of this textbook provides a fully updated approach to fuzzy sets and systems that can model uncertainty — i.e., “type-2” fuzzy sets and systems. The author demonstrates how to overcome the limitations of classical fuzzy sets and systems, enabling a wide range of applications from time-series forecasting to knowledge mining to control. In this new edition, a bottom-up approach is presented that begins by introducing classical (type-1) fuzzy sets and systems, and then explains how they can be modified to handle uncertainty. The author covers fuzzy rule-based systems – from type-1 to interval type-2 to general type-2 – in one volume. For hands-on experience, the book provides information on accessing MatLab and Java software to complement the content. The book features a full suite of classroom material.

- Presents fully updated material on new breakthroughs in human-inspired rule-based techniques for handling real-world uncertainties;
- Allows those already familiar with type-1 fuzzy sets and systems to rapidly come up to speed to type-2 fuzzy sets and systems;
- Features complete classroom material including end-of-chapter exercises, a solutions manual, and three case studies – forecasting of time series to knowledge mining from surveys and PID control.

3.4. Advanced Flight Dynamics with Elements of Flight Control
Contributed by: Nandan Kumar Sinha, nandan_aero@yahoo.com

Advanced Flight Dynamics with Elements of Flight Control
Published June 2017, CRC Press, Taylor and Francis Group, Boca Raton, Florida, USA.
Authors: Nandan K Sinha and N Ananthkrishnan
Details/inspection copy available at: https://www.routledge.com/products/9781498746045

4. Journals

4.1. Contents: Automatica
Contributed by: Elisa Capello, elisa.capello@polito.it

Table of Contents
Automatica
Vol. 80, June 2017

- Weiguo Xia, Ming Cao, “Analysis and applications of spectral properties of grounded Laplacian matrices for directed networks”, pages 10-16.
- Si-Lu Chen, Xiaocong Li, Chek Sing Teo, Kok Kiong Tan, “Composite jerk feedforward and disturbance observer for robust tracking of flexible systems”, pages 253-260.
- Suruz Miah, Arian Y. Panah, Mostafa Mohammad Hossein Fallah, Davide Spinello, “Generalized non-autonomous metric optimization for area coverage problems with mobile autonomous agents”, pages 295-299.

4.2. Contents: IEEE/CAA Journal of Automatica Sinica
Contributed by: Yan Ou, yan.ou@ia.ac.cn

Table of Contents
IEEE/CAA Journal of Automatica Sinica
Volume 4 (2017), Issue 2 (April)

Papers
- From Parallel Plants to Smart Plants: Intelligent Control and Management for Plant Growth. M. Z. Kang and F.-Y. Wang, page 161

SPECIAL ISSUE ON CONTROL AND OPTIMIZATION IN RENEWABLE ENERGY SYSTEMS
- Guest Editorial for Special Issue on Control and Optimization in Renewable Energy Systems. D. W. Qian, C. D. Li, Q. M. Yang, X. Y. Zhao, Y. B. Chen, and H. B. He, page 167
- Multilevel Feature Moving Average Ratio Method for Fault Diagnosis of the Microgrid Inverter Switch. Z. J. Huang, Z. S. Wang, and H. G. Zhang, page 177
- A Nonlinear Observer Approach of SOC Estimation Based on Hysteresis Model for Lithium-ion Battery. Y. Ma, B. S. Li, G. Y. Li, J. X. Zhang, and H. Chen, page 195
- An Optimized Oxygen System Scheduling With Electricity Cost Consideration in Steel Industry. Z. Y. Han, J. Zhao, and W. Wang, page 216
- Short-circuit Analysis in Large-scale Distribution Systems With High Penetration of Distributed Generators. L. V. Strezoski and M. D. Prica, page 243
- A Parametric Genetic Algorithm Approach to Assess Complementary Options of Large Scale Wind-solar Coupling. T. Mareda, L. Gaudard, and F. Romerio, page 260
- Output Tracking Control of a Hydrogen-air PEM Fuel Cell. S. W. Tong, J. J. Fang, and Y. N. Zhang, page 273
- Fast Distributed Demand Response Algorithm in Smart Grid. Q. F. Dong, L. Yu, W. Z. Song, J. J. Yang, Y. Wu, and J. Qi, page 280
- Pinning Synchronization Between Two General Fractional Complex Dynamical Networks With External Disturbances. W. Y. Ma, Y. J. Wu, and C. P. Li, page 332
- Effective Self-calibration for Camera Parameters and Hand-eye Geometry Based on Two Feature Points Motions. J. Sun, P. Wang, Z. K. Qin, and H. Qiao, page 370
- The Switching Fractional Order Chaotic System and Its Application to Image Encryption. J. L. Hou, R. Xi, P. Liu, and T. L. Liu, page 381
4.3. **Contents: Systems & Control Letters**

Contributed by: John Coca, j.coca@elsevier.com

Systems & Control Letters
Volume 103
May 2017
- Xiaofan Wu, Mihailo R. Jovanović, Sparsity-promoting optimal control of systems with symmetries, consensus and synchronization networks, Pages 1-8
- Ankush Chakrabarty, Raid Ayoub, Stanislaw H. Žak, Shreyas Sundaram, Delayed unknown input observers for discrete-time linear systems with guaranteed performance, Pages 9-15
- Pengpeng Zhang, Tengfei Liu, Zhong-Ping Jiang, Input-to-state stabilization of nonlinear discrete-time systems with event-triggered controllers, Pages 16-22
- Daniel E. Miller, A parameter adaptive controller which provides exponential stability: The first order case, Pages 23-31
- P. Laakkonen, A. Quadrat, A fractional representation approach to the robust regulation problem for SISO systems, Pages 32-37
- Yang Liu, Zidong Wang, Xiao He, D.H. Zhou, Finite-horizon quantized filter design for a class of time-varying systems under event-triggered transmissions, Pages 38-44
- Yong He, Partial exact controllability for wave equations, Pages 45-49
- Luca Consolini, Marco Locatelli, Andrea Minari, Aurelio Piazza, An optimal complexity algorithm for minimum-time velocity planning, Pages 50-57
- Zhiqiang Miao, Yaoman Wang, Rafael Fierro, Cooperative circumnavigation of a moving target with multiple nonholonomic robots using backstepping design, Pages 58-65

4.4. **Contents: European Journal of Control**

Contributed by: John Coca, j.coca@elsevier.com

European Journal of Control
Volume 35
May 2017
- Sean Costello, Grégory François, Dominique Bonvin, Crosswind kite control – A benchmark problem for advanced control and dynamic optimization, Pages 1-10
- Simone Göttlich, Peter Schillen, Numerical discretization of boundary control problems for systems of balance laws: Feedback stabilization, Pages 11-18
- Samir Toumi, Lotfi Beji, Rhouma Mlayeh, Azgal Abichou, Stabilization of torsional vibration in oilwell drillstring system, Pages 19-27
- Lahcen Maniar, Mohamed Oumoun, Jean-Claude Vivalda, On the stabilization of quadratic nonlinear systems, Pages 28-33
- Timm Faulwasser, Dominique Bonvin, Exact turnpike properties and economic NMPC, Pages 34-41
- Michael Jost, Gabriele Pannocchia, Martin Mönnigmann, Accelerating linear model predictive control by constraint removal, Pages 42-49
- Yuliang Bai, James D. Biggs, Xiaogang Wang, Naigang Cui, A singular adaptive attitude control with active disturbance rejection, Pages 50-56
4.5. Contents: Annual Reviews in Control
Contributed by: John Coca, j.coca@elsevier.com

Annual Reviews in Control
Volume 43
2017
- Anton V. Proskurnikov, Roberto Tempo, A tutorial on modeling and analysis of dynamic social networks. Part I, Pages 65-79
- Giacomo Como, On resilient control of dynamical flow networks, Pages 80-90
- Jan Rohac, Jakob M. Hansen, Mushfiqul Alam, Martin Sipos, Tor A. Johansen, Thor I. Fossen, Validation of nonlinear integrated navigation solutions, Pages 91-106
- Mathukumalli Vidyasagar, Machine learning methods in computational cancer biology, Pages 107-127
- Toru Seo, Alexandre M. Bayen, Takahiko Kusakabe, Yasuo Asakura, Traffic state estimation on highway: A comprehensive survey, Pages 128-151
- J. Zaytoon, B. Riera, Synthesis and implementation of logic controllers – A review, Pages 152-168
- Afshan Naseem, Syed Tasweer Hussain Shah, Shoab Ahmed Khan, Asad Waqar Malik, Decision support system for optimum decision making process in threat evaluation and weapon assignment: Current status, challenges and future directions, Pages 169-187
- Dan Zhang, Bin Wei, A review on model reference adaptive control of robotic manipulators, Pages 188-198
- Johannes Jäschke, Yi Cao, Vinay Kariwala, Self-optimizing control – A survey, Pages 199-223
- Rodrigo Reyes Levalle, Shimon Y. Noi, Resilience in supply networks: Definition, dimensions, and levels, Pages 224-236

4.6. Contents: Journal of Process Control
Contributed by: John Coca, j.coca@elsevier.com

Journal of Process Control
Volume 54
June 2017
- Antonio Ferramosca, Alejandro H. González, Daniel Limon, Offset-free multi-model economic model predictive control for changing economic criterion, Pages 1-13
- Xiaoxia Chen, Xin Chen, Jinhua She, Min Wu, A hybrid just-in-time soft sensor for carbon efficiency of iron ore sintering process based on feature extraction of cross-sectional frames at discharge end, Pages 14-24
- Khaled Zabet, Robert Haber, Robust tuning of PFC (Predictive Functional Control) based on first- and aperiodic second-order plus time delay models, Pages 25-37
- Alejandro G. Marchetti, Timm Faulwasser, Dominique Bonvin, A feasible-side globally convergent modifier-adaptation scheme, Pages 38-46
- M. Ziyan Sheriff, Majdi Mansouri, M. Nazmul Karim, Hazem Nounou, Mohamed Nounou, Fault detection using multiscale PCA-based moving window GLRT, Pages 47-64
- Agustina D’Jorge, Antonio Ferramosca, Alejandro H. González, A robust gradient-based MPC for integrating real time optimizer (RTO) with control, Pages 65-80
- Kang-Kang Xu, Han-Xiong Li, Hai-Dong Yang, Dual least squares support vector machines based spatiotemporal modeling for nonlinear distributed thermal processes, Pages 81-89
- Wei Wu, Shin-An Chen, Jenn-Jiang Hwang, Fu-Teng Hsu, Optimization and control of a stand-alone hybrid solid oxide fuel cells/gas turbine system coupled with dry reforming of methane, Pages 90-100
- Philipp Nguyen, Robert Tenno, Stochastic evolution of regulation errors in a boundary-actuated desalination plant, Pages 101-117
- M. Crespo, B. Ivorra, A.M. Ramos, A. Rapaport, Modeling and optimization of activated sludge bioreactors for wastewater treatment taking into account spatial inhomogeneities, Pages 118-128
- F. Guo, K. Hariprasad, B. Huang, Y.S. Ding, Robust identification for nonlinear errors-in-variables systems using the EM algorithm, Pages 129-137
- Esmaeil Jahanshahi, Sigurd Skogestad, Nonlinear control solutions to prevent slugging flow in offshore oil production, Pages 138-151
- Kai Wang, Junghui Chen, Zhijuan Song, Data-driven sensor fault diagnosis systems for linear feedback control loops, Pages 152-171

Back to the contents

4.7. Contents: Journal of Process Control

Contributed by: John Coca, j.coca@elsevier.com

Journal of Process Control
Volume 55
July 2017

- Ronghu Chi, Xiaohua Liu, Ruikun Zhang, Zhongsheng Hou, Biao Huang, Constrained data-driven optimal iterative learning control, Pages 10-29
- Paulo R.C. Mendes, Jose M. Maestre, Carlos Bordons, Julio E. Normey-Rico, A practical approach for hybrid distributed MPC, Pages 30-41
- Siyun Wang, Jodie M. Simkoff, Michael Baldea, Leo H. Chiang, Ivan Castillo, Rahul Bindlish, David B. Stanley, Autocovariance-based MPC model mismatch estimation for systems with measurable disturbances, Pages 42-54
- Riccardo De-Luca, Fabrizio Bezzo, Quentin Béchet, Olivier Bernard, Exploiting meteorological forecasts for the optimal operation of algal ponds, Pages 55-65

Back to the contents

Contributed by: John Coca, j.coca@elsevier.com

Nonlinear Analysis: Hybrid Systems
Volume 25
August 2017

- Chongyang Liu, Zhaohua Gong, Kok Lay Teo, Jie Sun, Louis Caccetta, Robust multi-objective optimal switching control arising in 1,3-propanediol microbial fed-batch process, Pages 1-20
- Jingang Zhai, Teng Niu, Jianxiong Ye, Enmin Feng, Optimal control of nonlinear switched system with
mixed constraints and its parallel optimization algorithm, Pages 21-40
- Hao Shen, Lei Su, Zheng-Guang Wu, Ju H. Park, Reliable dissipative control for Markov jump systems using an event-triggered sampling information scheme, Pages 41-59
- Assalé Adjé, Pierre-Loïc Garoche, Victor Magron, A Sums-of-Squares extension of policy iterations, Pages 60-78
- Radoslaw Zawiski, Stabilizability of nonlinear infinite dimensional switched systems by measures of non-compactness in the space, Pages 79-89
- Xinzi Liu, Kexue Zhang, Wei-Chau Xie, Consensus seeking in multi-agent systems via hybrid protocols with impulse delays, Pages 90-98
- M.V. Dolgopolik, A.L. Fradkov, Nonsmooth and discontinuous speed-gradient algorithms, Pages 99-113
- Xingwen Liu, Yongbin Yu, Hao Chen, Stability of perturbed switched nonlinear systems with delays, Pages 114-125
- Vadim Azhmyakov, Raymundo Juarez, A first-order numerical approach to switched-mode systems optimization, Pages 126-137
- Nak-seung P. Hyun, Erik I. Verriest, Causal modeling in impulsive systems: A new rigorous non-standard analysis approach, Pages 138-154
- Aaron D. Ames, Paulo Tabuada, Austin Jones, Wen-Loong Ma, Matthias Rungger, Bastian Schürmann, Shishir Kolathaya, Jessy W. Grizzle, First steps toward formal controller synthesis for bipedal robots with experimental implementation, Pages 155-173
- Shishir Kolathaya, Aaron D. Ames, Parameter to state stability of control Lyapunov functions for hybrid system models of robots, Pages 174-191
- A. Iovine, F. Valentini, E. De Santis, M.D. Di Benedetto, M. Pratesi, Safe human-inspired mesoscopic hybrid automaton for autonomous vehicles, Pages 192-210
- Mohammad Al Khatib, Antoine Girard, Thao Dang, Stability verification and timing contract synthesis for linear impulsive systems using reachability analysis, Pages 211-226
- Kaveh Akbari Hamed, Jessy W. Grizzle, Reduced-order framework for exponential stabilization of periodic orbits on parameterized hybrid zero dynamics manifolds: Application to bipedal locomotion, Pages 227-245
- Julia L. Fleck, Christos G. Cassandras, Optimal design of personalized prostate cancer therapy using Infinitesimal Perturbation Analysis, Pages 246-262
- Ali Pakniyat, Peter E. Caines, Hybrid optimal control of an electric vehicle with a dual-planetary transmission, Pages 263-282
- Anantharaman Subbaraman, Andrew R. Teel, Robust global recurrence for a class of stochastic hybrid systems, Pages 283-297
- Kathrin Flaßkamp, Alex R. Ansari, Todd D. Murphey, Hybrid control for tracking of invariant manifolds, Pages 298-311

4.9. Contents: ISA Transactions
Contributed by: John Coca, j.coca@elsevier.com

ISA Transactions
Volume 68
May 2017
- Davood Shagaghhi, Alireza Fatehi, Ali Khaki-Sedigh, Multi-linear model set design based on the nonlinearity measure and H-gap metric, Pages 1-13
- Jie Wu, Zhu-Jun Zhou, Xi-Sheng Zhan, Huai-Cheng Yan, Ming-Feng Ge, Optimal modified tracking performance for MIMO networked control systems with communication constraints, Pages 14-21
- Zhijia Zhao, Yu Liu, Fei Luo, Output feedback boundary control of an axially moving system with input saturation constraint, Pages 22-32
- Amir Zakrimeh, Farzad Hashemzadeh, Amir Rikhtehgar Ghasi, Dual-user nonlinear teleoperation subjected to varying time delay and bounded inputs, Pages 33-47
- Amir Abbasi, Javad Poshtan, Robust state estimation for a class of uncertain nonlinear systems: Comparison of two approaches, Pages 48-53
- G. Sánchez, M. Murillo, L. Giovannini, Adaptive arrival cost update for improving Moving Horizon Estimation performance, Pages 54-62
- Wei Ao, Yongdong Song, Changyun Wen, Adaptive robust fault tolerant control design for a class of non-linear uncertain MIMO systems with quantization, Pages 63-72
- Cheng Zeng, Shan Liang, Shuwen Xiang, A novel condition for stable nonlinear sampled-data models using higher-order discretized approximations with zero dynamics, Pages 73-81
- Miaoping Sun, Xiaohong Nian, Liqiong Dai, Hua Guo, The design of delay-dependent wide-area DOFC with prescribed degree of stability α for damping inter-area low-frequency oscillations in power system, Pages 82-89
- Sajad Azizi, Sufficient LMI conditions and Lyapunov redesign for the robust stability of a class of feedback linearized dynamical systems, Pages 90-98
- Farshad Merrikh-Bayat, A uniform LMI formulation for tuning PID, multi-term fractional-order PID, and Tilt-Integral-Derivative (TID) for integer and fractional-order processes, Pages 99-108
- Dengfeng Xiao, Jianqi An, Yong He, Min Wu, The chaotic characteristic of the carbon-monoxide utilization ratio in the blast furnace, Pages 109-115
- Xiong Xu, Guo-Ying Gu, Zhenhua Xiong, Xinjun Sheng, Xiangyang Zhu, Development of a decentralized multi-axis synchronous control approach for real-time networks, Pages 116-126
- Yang Zheng, Jianzhong Zhou, Yanhe Xu, Yuncheng Zhang, Zhongdong Qian, A distributed model predictive control based load frequency control scheme for multi-area interconnected power system using discrete-time Laguerre functions, Pages 127-140
- Zhiguo Yan, Yunxia Song, Ju H. Park, Finite-time stability and stabilization for stochastic markov jump systems with mode-dependent time delays, Pages 141-149
- Dan Zhang, Zhenhua Xu, Qing-Guo Wang, Yun-Bo Zhao, Leader–follower H∞ consensus of linear multi-agent systems with aperiodic sampling and switching connected topologies, Pages 150-159
- Zhi-Hui Zhang, Guang-Hong Yang, Event-triggered fault detection for a class of discrete-time linear systems using interval observers, Pages 160-169
- Zhichen Li, Yan Bai, Congzhi Huang, Huaicheng Yan, Further results on stabilization for interval time-delay systems via new integral inequality approach, Pages 170-180
- Chudong Tong, Ting Lan, Xuhua Shi, Double-layer ensemble monitoring of non-gaussian processes using modified independent component analysis, Pages 181-188
- Naveed Ishtiaq Chaudhary, Syed Zubair, Muhammad Asif Zahoor Raja, A new computing approach for power signal modeling using fractional adaptive algorithms, Pages 189-202
- Sudipta Chakraborty, Sandip Ghosh, Asim Kumar Naskar, All-PD control of pure Integrating Plus Time-Delay processes with gain and phase-margin specifications, Pages 203-211
- WeiJia Zheng, Ying Luo, XiaoHong Wang, YouGuo Pi, YangQuan Chen, Fractional order PIλDµ controller design for satisfying time and frequency domain specifications simultaneously, Pages 212-222
- K. Ghousiya Begum, A. Seshagiri Rao, T.K. Radhakrishnan, Enhanced IMC based PID controller design
for non-minimum phase (NMP) integrating processes with time delays, Pages 223-234
- Nikhil Pachauri, Vijander Singh, Asha Rani, Two degree of freedom PID based inferential control of continuous bioreactor for ethanol production, Pages 235-250
- Anupam Kumar, Vijay Kumar, A novel interval type-2 fractional order fuzzy PID controller: Design, performance evaluation, and its optimal time domain tuning, Pages 251-275
- Kai Zhang, Yuri A.W. Shardt, Zhiwen Chen, Xu Yang, Steven X. Ding, Kaixiang Peng, A KPI-based process monitoring and fault detection framework for large-scale processes, Pages 276-286
- Weide Xu, Junfeng Zhang, Rilong Zhang, Application of multi-model switching predictive functional control on the temperature system of an electric heating furnace, Pages 287-292
- Miguel Martínez-Rey, Felipe Espinosa, Alfredo Gardel, Analysis of the optimal sampling rate for state estimation in sensor networks with delays, Pages 293-301
- Milu Zhang, Tianzhen Wang, Tianhao Tang, Mohamed Benbouzid, Demba Diallo, An imbalance fault detection method based on data normalization and EMD for marine current turbines, Pages 302-312
- Shirong Zhang, Qian Tang, Yu Lin, Yuling Tang, Fault detection of feed water treatment process using PCA-WD with parameter optimization, Pages 313-326
- Bo Ding, Huajing Fang, Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression, Pages 327-334
- Zhankui Song, Kaibiao Sun, Shuai Ling, Stabilization and synchronization for a mechanical system via adaptive sliding mode control, Pages 353-366
- Qing Guo, Jing-min Yin, Tian Yu, Dan Jiang, Coupled-disturbance-observer-based position tracking control for a cascade electro-hydraulic system, Pages 367-380
- Jaromír Fišer, Pavel Zítek, Pavel Skopec, Jan Knobloch, Tomáš Vyhlídal, Dominant root locus in state estimator design for material flow processes: A case study of hot strip rolling, Pages 381-401
- Tao Li, Hui Zhao, Global finite-time adaptive control for uncalibrated robot manipulator based on visual servoing, Pages 402-411
- Yongkang Liu, Richard Candell, Nader Moayeri, Effects of wireless packet loss in industrial process control systems, Pages 412-424
- C. Shanthi, N. Pappa, An artificial intelligence based improved classification of two-phase flow patterns with feature extracted from acquired images, Pages 425-432

4.10. Contents: Control Engineering Practice
Contributed by: Martin Böck, cep@acin.tuwien.ac.at

Control Engineering Practice
Volume 63
June 2017
- Miquel À. Cugueró-Escofet, Vicenç Puig, Joseba Quevedo, Optimal pressure sensor placement and assessment for leak location using a relaxed isolation index: Application to the Barcelona water network, Pages 1-12
- Chin Leei Cham, Ai Hui Tan, Wooi Haw Tan, Identification of a multivariable nonlinear and time-varying mist reactor system, Pages 13-23

Back to the contents
4.11. Contents: Control Theory and Technology

Contributed by: Zou Tiefeng, tfzou@scut.edu.cn

Control Theory and Technology
(formerly entitled Journal of Control Theory and Applications)
Vol. 15, No. 2, May 2017
ISSN: 2095-6983 CODEN: CTTOAM
http://jcta.alljournals.ac.cn/cta_en/ch/index.aspx
http://www.springer.com/engineering/control/journal/11768

Special issue on model-based optimal control theory and technology in automotive control

- Editorial, T. Shen P.81
- Cylinder pressure based combustion phase optimization and control in spark-ignited engines, Y. Zhang, T. Shen P.83
- Experimental investigation of control updating period monitoring in industrial PLC-based fast MPC: Application to the constrained control of a cryogenic refrigerator, F. Bonne, M. Alamir, P. Bonnay P.92
- Optimal heat release shaping in a reactivity controlled compression ignition (RCCI) engine, C. Guardiola, B. Pla, A. García, V. Boronat P.117
- Online calibration of combustion phase in a diesel engine, Q. Tan, P. Divekar, Y. Tan, X. Chen, M. Zheng P.129
- MPC-based torque control of permanent magnet synchronous motor for electric vehicles via switching optimization, B. Ren, H. Chen, H. Zhao, W. Xu P.138
- Comparison of generalized engine control and MPC based on maximum principle, A. Ohata P.150

Letters
- Towards to dynamic optimal control for large-scale distributed systems, S. Li P.158
Contributed by: Lichen Fu, lichen@ntu.edu.tw

Asian Journal of Control
Vol.19, No.3 May, 2017
CONTENTS
[Regular Paper]
1. Paper Title: Observability Conditions by Polynomial Ideals (pages 821–831), Y. Kawano and T. Ohtsuka
3. Paper Title: Bounded-Input Control of the Quadrotor Unmanned Aerial Vehicle: A Vision-Based Approach (pages 840–855), Hamed Jabbari Asl and Jungwon Yoon
4. Paper Title: Design of Adaptive Block Backstepping Controllers with Perturbations Estimation for Nonlinear State-Delayed Systems in Semi-Strict Feedback Form (pages 856–873), Chih-Chiang Cheng, Yu-Chi Chiang and Pei-Chia Huang
5. Paper Title: Existence and Controllability Results for a New Class of Impulsive Stochastic Partial Integro-Differential Inclusions with State-Dependent Delay (pages 874–899), Zuomao Yan and Xiumei Jia
6. Paper Title: Distributed Control for Coupled Nonholonomic Mobile Robots under the Event-Triggered and Self-Triggered Frameworks (pages 900–917), Chengshuai Yang, Yilong Qiu, Fei Chen and Lining Xiang
7. Paper Title: Distributed Observer-based Stabilization of Nonlinear Multi-agent Systems with Sampled-data Control (pages 918–928), Ying Wan, Jinde Cao, Ahmed Alsaeedi and Tasawar Hayat
9. Paper Title: Consensus of Delayed Multi-agent Systems via Intermittent Impulsive Control (pages 941–950), Shasha Yang, Xiaofeng Liao, Yanbing Liu, Xin Chen and Dingling Ge
10. Paper Title: Stabilization and H_{∞} Control of Nonlinear Switched Hamiltonian Systems Subject to Actuator Saturation (pages 951–960), Han Li and Airong Wei
11. Paper Title: Convergence Results of the Biconjugate Residual Algorithm for Solving Generalized Sylvester Matrix Equation (pages 961–968), Masoud Hajarian
12. Paper Title: NON-PDC Observer-Based T-S Fuzzy Tracking Controller Design and its Application in CHAOS Control (pages 969–982), Mohammad Hassan Asemian and Ramin Vatankhah
13. Paper Title: Approximation Optimal Vibration for Networked Nonlinear Vehicle Active Suspension with Actuator Time Delay (pages 983–995), Shi-Yuan Han, Cheng-Hui Zhang and Gong-You Tang
14. Paper Title: Operational Optimization for Microgrid of Buildings with Distributed Solar Power and Battery (pages 996–1008), Yuanming Zhang and Qing-Shan Jia
16. Paper Title: Design of an Optimal Fuzzy Sliding Mode Control using Scalar Sign Function (pages 1019–1033), Lotfi Chaouech, Moez Soltani, Slim Dhalri and Abdelkader Chaari
17. Paper Title: Robust Stability and Stabilization Of TCP-Networked Control Systems with Multiple Delay System Modeling (pages 1034–1045), Masoumeh Azadegan and Mohammad T. H. Beheshti
19. Paper Title: Stabilization of Coupled ODE-PDE System with Intermediate Point and Spatially Varying Effects Interconnection (pages 1060–1074), Yuanlong Yuan, Zhengwei Shen and Fucheng Liao

20. Paper Title: Adaptive Control Scheme for Large-Scale Interconnected Systems Described by Hammerstein Models (pages 1075–1088), Mourad Elloumi and Samira Kamoun

22. Paper Title: Distributed Three-Dimensional Formation Containment Control of Multiple Unmanned Aerial Vehicle Systems (pages 1103–1113), Tao Han, Ming Chi, Zhi-Hong Guan, Bin Hu, Jiang-Wen Xiao and Yuehua Huang

23. Paper Title: Hybrid Adaptive Type-2 Fuzzy Tracking Control of Chaotic Oscillation Damping of Power Systems (pages 1114–1125), Majid Moradi Zirkohi, Tufan Kumbasar and Tsung-Chih Lin

24. Paper Title: An Optimal Control Approach to Linear Systems Controlled by Multiple Controllers (pages 1126–1139), Guoqing Yang, Zhenyu Gao and Zhongchang Liu

25. Paper Title: Stable Delayed Bilateral Teleoperation of Mobile Manipulators (pages 1140–1152), Diego D. Santiago, Emanuel Sawaiński and Vicente A. Mut

27. Paper Title: Recursive Generalized Maximum Correntropy Criterion Algorithm with Sparse Penalty Constraints for System Identification (pages 1164–1172), Wentao Ma, Jiandong Duan, Badong Chen, Guan Gui and Weishi Man

28. Paper Title: Event-triggered PCS Based Trajectory Tracking Control of Systems with Perturbation (pages 1173–1188), Chengcheng Song, Haoping Wang, Yang Tian and Nicolai Christov

[Brief Paper]

2. Paper Title: Robust MPC for Linear Systems with Structured Time-Varying Uncertainties and Saturating Actuator (pages 1197–1204), Langwen Zhang, Wei Xie and Jingcheng Wang

3. Paper Title: A Differential Game Based Guidance Law for an Accelerating Exoatmospheric Missile (pages 1205–1216), Qing Ye and Chunsheng Liu

4. Paper Title: Model Reduction of Large Scale Descriptor Systems Using Time Limited Gramians (pages 1217–1227), Khawaja Shafiq Haider, Abdul Ghafoor, Muhammad Imran and Fahad Mumtaz Malik

5. Paper Title: Structural Properties of Networked Control Systems With Bandwidth Limitations and Delays (pages 1228–1238), Mohammad Malahi Share Pasand and Mohsen Montazeri

6. Paper Title: Robust Stabilization of Nonlinear PVTOL Aircraft with Parameter Uncertainties (pages 1239–1249), Chen Yu-Chan, Ma Bao-Li and Xie Wen-Jing

7. Paper Title: Variable Gain Output Feedback Control of A Networked Temperature Control System Based on Online Delay Estimation (pages 1250–1254), Chhavi Suryendu, Sandip Ghosh and Bidyadhar Subudhi

[Back to the contents]

Contributed by: Young Hoon Joo, journal@ijcas.com

International Journal of Control, Automation, and Systems (IJCAS)
ISSN: 1598-6446
http://www.springer.com/engineering/robotics/journal/12555
Table of contents
Vol. 15, No. 3, June 2017

- A New Extended LMI-based Robust Gain Scheduled State Feedback H2 Controller Design, Yusuf Altun 967-975
- Dynamic Output Feedback Robust MPC for LPV Systems Subject to Input Saturation and Bounded Disturbance, Xubin Ping*, Zhiwu Li, and Abdulrahman Al-Ahmari 976-985
- Stability and Asynchronous Stabilization for a Class of Discrete-time Switched Nonlinear Systems with Stable and Unstable Subsystems, Qunxian Zheng*, Hongbin Zhang, and Dianhao Zheng 986-994
- Dynamic Analysis of a 5D Fractional-order Hyperchaotic System, Shan Wang and Rancho Wu* 1003-1010
- Positive Observer Design for Linear Impulsive Positive Systems with Interval Uncertainties and Time Delay, Meng-Jie Hu, Yan-Wu Wang, and Jiang-Wen Xiao* 1032-1039
- Switching Predictive Control for Continuous-time Markovian Jump Delay Systems, Jiwei Wen* and Li Peng 1040-1050
- Optimal Controls of Fractional Impulsive Partial Neutral Stochastic Integrodifferential Systems with Infinite Delay in Hilbert Spaces, Zuomao Yan* and Xiumei Jia 1051-1068
- Quasi-min-max Output-feedback Model Predictive Control for LPV Systems with Input Saturation, Tae-Hyoung Kim* and Ho-Woon Lee 1069-1076
- Kalman Filter-based Wind Speed Estimation for Wind Turbine Control, Dongran Song, Jian Yang, Mi Dong*, and Young Hoon Joo* 1089-1096
- A Novel Robust Adaptive Second-order Sliding Mode Tracking Control Technique for Uncertain Dynamical Systems with Matched and Unmatched Disturbances, Saleh Mobayan* and Fairouz Tchier 1097-1106
- Quantized Control for Uncertain Singular Markovian Jump Linear Systems with General Incomplete Transition Rates, Jing Xie, Yong-Gui Kao*, Cai-Hong Zhang and Hamid Reza Karimi 1107-1116
- State Feedback Design for Nonlinear Quadratic Systems with Randomly Occurring Actuator Saturation, Yujing Shi*, Yueru Li, Shanqiang Li and Hongyu Liu 1117-1124
- Global Adaptive Control for a Class of Uncertain Stochastic Nonlinear Systems with Unknown Output Gain, Wenting Zha, Junyong Zhai*, and Shumin Fei 1125-1133
- Bifurcation Control in a Delayed Two-neuron Fractional Network, Lingzhi Zhao, Jinde Cao , Chengdai Huang, Ahmed Alsaedi, Abdullah Al-Barakati and Habib M. Fardoun 1134-1144
- Robust Fault Diagnosis Scheme in a Class of Nonlinear System Based on UO and Fuzzy Residual, S. Hamideh Sedigh Ziyabari*, Mahdi Aliyari Shoorehdeli 1145-1154
- TDOA/FDOA based Target Tracking with Imperfect Position and Velocity Data of Distributed Moving Sensors, Seul-Ki Han, Won-Sang Ra, and Jin Bae Park 1155-1166
- Almost Global Finite-time Stabilization of Spacecraft Formation Flying with Decentralized Collision Avoidance, Daero Lee* and George Vukovich 1167-1180
- Containment Control for Directed Networks Multi-agent System with Nonlinear Dynamics and Communication Time-delays, Bo Li, Zeng-qiang Chen*, Chun-yun Zhang, Zhong-xin Liu, and Qing Zhang 1181-1188
A Filtering based Multi-innovation Extended Stochastic Gradient Algorithm for Multivariable Control Systems, Jian Pan, Xiao Jiang*, Xiangkui Wan, Wenfang Ding 1189-1197

Servo System Design for Speed Control of AC Induction Motors Using Polynomial Differential Operator, Dae Hwan Kim, Trong Hai Nguyen, Pandu Sandi Pratama, Hak Kyeong Kim, Young Seok Jung, and Sang Bong Kim* 1207-1216

Order Reduction of Plant and Controller in Closed Loop Identification based on Joint Input-Output Approach, Atsushi Fujimori* and Shinsuke Ohara 1217-1226

Robust Output Tracking Control for a Class of Uncertain Nonlinear Systems Using Extended State Observer, Yan Zhao, Jiang-Bo Yu*, and Jie Tian 1227-1232

A Simple Method to Design Robust Fractional-order Lead Compensator, Sharad P. Jadhav*, Rajan H. Chile, and Satish T. Hamde 1236-1248

Auxiliary Particle Bernoulli Filter for Target Tracking, Bo Li* and Jianli Zhao 1249-1258

Adaptive Feedback Linearization Control for Twin Rotor Multiple-input Multiple-output System, Nguyen Van Chi 1267-1274

Generalized Hierarchical Block Circulant Structure of Multi-agent Systems, Muhammad Iqbal, John Leth, and Trung Dung Ngo* 1275-1286

A Formation and Traction Control Design for Multiple Mobile Robots, Hyun-Su Kim, Jong-Koo Park, Tae-Yong Kue*, Nak Yong Ko, and Yong-Seon Moon 1287-1301

The LQR Baseline with Adaptive Augmentation Rejection of Unmatched Input Disturbance, Xin Wang, Xin Chen*, and Liyan Wen 1302-1313

Fractional Sliding Mode Control of Underwater ROVs subject to Non-differentiable Disturbances, Aldo-Jonathan Munoz-Vazquez*, Heriberto Ramirez-Rodriguez, Vicente Parra-Vega, and Anand Sanchez-Orta 1314-1321

A Novel Geometric Invariant of a Pair of Conics and its Application to Eyeglasses-tracking Interface, Heon-Hui Kim and Kwang-Hyun Park* 1332-1341

Equitranslational and Axially Rotational Microrobot using Electromagnetic Actuation System, Hyunchul Choi, Semi Jeong, Gwangjun Go, Cheong Lee, Jin Zhen, Seong Young Ko, Jong-Oh Park* and Sukho Park* 1342-1350

Anticipated Trajectory based Proportional Navigation Guidance Scheme for Intercepting High Maneuvering Targets, Amit Kumar*, Aparajita Ojha, and Prabin Kumar Padhy 1351-1361

Visual Servoing Using an Optimized Trajectory Planning Technique for a 4 DOFs Robotic Manipulator, Mohammad Keshmiri, Wen-Fang Xie*, and Ahmad Ghasemi 1362-1373

Stereo-Vision based Obstacle Avoidance by Finding Safe Region, Xiaojie Zhao, Gang Wang*, Maozhi Cai and Hongkun Zhou 1374-1383

System Identification of an Airship using Trust Region Reflective Least Squares Algorithm, Mansoor Ahsan and Mohammad Ahmad Choudhry* 1384-1393

An Improved H_{∞} Fuzzy Filter for Nonlinear Sampled-data Systems, Ho Jun Kim, Jin Bae Park, and Young Hoon Joo 1394-1404
- Pinning Control of Complex Network Synchronization: A Recurrent Neural Network Approach, Edgar N. Sanchez*, David I. Rodriguez-Castellanos, Guanrong Chen, and Riemann Ruiz-Cruz 1405-1413
- Approximation-based Adaptive Tracking of Uncertain Input-Quantized Nonlinear Systems in the Presence of Unknown Quantization Parameters and Control Directions, Yun Ho Choi and Sung Jin Yoo* 1414-1424
- Adaptive Neural Network Tracking of a Class of Switched Nonlinear Systems with Time-varying Output Constraints, Seung Woo Lee, Hyoung Oh Kim, and Sung Jin Yoo* 1425-1433
- A New Quadrotor Manipulation System: Modeling and Point-to-point Task Space Control, Ahmed Khalifa* and Mohamed Fanni 1434-1446
- Cartesian Space Consensus of Heterogeneous and Uncertain Euler-Lagrange Systems Using Artificial Neural Networks, Remberto Machuca, Carlos I. Aldana, Rodrigo Munguia and Emmanuel Nuno* 1447-1455
- Adaptive Wavelet Neural Network Controller for Active Suppression Control of a Diaphragm-Type Pneumatic Vibration Isolator, Hung-Yi Chen and Jin-Wei Liang 1456-1465

Contributed by: Guillaume Mercère, guillaume.mercere@univ-poitiers.fr

CFP: Special Issue on System identification and control in biomedical applications in IEEE Transactions on Control Systems Technology

Contributions are invited for a special issue of the IEEE Transactions on Control Systems Technology devoted to the subject of System Identification and Control in Biomedical Applications. The purpose of this special issue is to document the current status of research in this field through an original collection of diverse, high-quality papers. The emphasis is on the role control systems technology plays in advancing the state of the art in the challenges of applying feedback control in living organisms, with emphasis on biomedicine. Specifically, we aim at (i) pointing out theoretical and practical issues specific to bio-medical systems, (ii) bringing together solutions developed under different settings with specific attention to the validation of these tools in bio-medical settings using real-life datasets and experiments, and (iii) introducing significant case studies. Topics of common interests include (but are not limited to) the following:
- theoretical and implementation challenges which arise in medical systems,
- control engineering tools for solving specific system design problems in medical technology,
- novel data-driven modeling techniques capturing the dynamics of biomedical systems, and accounting for intra- and inter-individual variability,
- evidence of successful projects in biomedicine enabled by system identification and control, such as the artificial pancreas and closed-loop anesthesia.
- application areas in healthcare and medical systems, such as assistive devices and therapeutics in medical rehabilitation, and mathematical models of infectious disease spread.
- prevention and treatment of chronic, relapsing disorders and illnesses such as cancer, diabetes, obesity, and HIV.

Only contributions that include significant results based on analysis of real data or experimental validation will be included. Papers must contain high-quality original contributions and be prepared in accordance with the IEEE Transactions on Control Systems Technology standards. Prospective authors should state in their cover letter and in the notes section of the submission site that their manuscript is intended for the
special issue on “system identification and control in biomedical applications.” Submitted manuscripts must not have been previously published or be under review for possible publication elsewhere.

Time line:
Manuscripts Due: November 1, 2017
Notification to authors (after the first round of reviews): March 1, 2018
Notification of final decision: June 1, 2018
Publication Date: January 2019
Authors can submit their manuscripts via https://mc.manuscriptcentral.com/tcst
Information for Authors prior to submitting a paper is available via http://www.ieececss.org/publications/tcst/information-authors
All inquiries should be directed to G. Mercère you can contact via his email address: guillaume.mercere@univ-poitiers.fr
Guest Editors:
Guillaume Mercere, Universitede Poitiers, France (LEAD)
Bayu Jayawardhana, University of Groningen, The Netherlands
Alexander Medvedev, Uppsala University, Sweden
Daniel E. Rivera, Arizona State University, Tempe, Arizona, USA
Caterina Scoglio, Kansas State University, Manhattan, Kansas, USA

5. Conferences

5.1. International Symposium on Computer Performance, Modeling, Measurements and Evaluation
Contributed by: Yingdong Lu, yingdong@us.ibm.com

CALL FOR PAPERS
IFIP WG 7.3 PERFORMANCE 2017
35TH INTERNATIONAL SYMPOSIUM ON COMPUTER PERFORMANCE, MODELING, MEASUREMENTS AND EVALUATION
HTTP://PERFORMANCE17.CS.COLUMBIA.EDU/
NOVEMBER 13-17, 2017
COLUMBIA UNIVERSITY
NEW YORK, USA
The IFIP PERFORMANCE 2017 conference solicits research papers on the design of algorithms, mathematical modeling, simulation and measurement techniques for computer systems or communication networks. Topics of interest include the following.
Methodologically-oriented design and evaluation studies of:
- Network architectures, protocols and algorithms.
- Wireless, mobile, ad-hoc, sensor and cellular networks.
- Data centers, cloud computing and virtualization.
- Computer architectures, memory systems and storage systems.
- Energy-efficient computing and networking.
- Security systems, Internet servers, multimedia systems and web services.
Social networks, smart grid and sensing infrastructure.
Operating systems, file systems and databases.
Methodologies, evaluation techniques, and algorithms for:
- Capacity planning, resource allocation, routing, scheduling and Quality of Service.
- System measurement and monitoring.
- Stochastic analysis, statistical analysis and simulation.
- Large scale data collection, management and processing.

PAPER SUBMISSION
Papers should not exceed 12 pages double-column and single-spaced including figures, tables, and references in standard ACM format. In addition, a 2-page appendix is permitted, where the appendix does not count towards the original 12 pages. Papers must be submitted electronically in printable pdf form. Templates for the standard ACM format can be found at this link. Both strict and alternate styles are acceptable for submission. No changes to margins, spacing, or font sizes are allowed from those specified by the style files. Papers violating the formatting guidelines will be returned without review.
The papers, if accepted, will be presented in the conference and published in a special issue of the ACM Performance Evaluation Review (PER). The style file can be found here.
Warning: It is ACM policy not to allow double submissions, where the same paper is submitted to more than one conference/journal concurrently. Any double submissions detected will be immediately rejected from all conferences/journals involved.

REVIEW PROCESS
All submissions will be reviewed using a DOUBLE-BLIND REVIEW process: the identity of authors and referees will not be revealed to each other. To ensure blind reviewing, authors’ names and affiliations should not appear in the paper; bibliographic references should be made in such a way as to preserve author anonymity. Papers will be selected on the basis of their originality, technical standards, relevance and clarity. Submissions must be made electronically, details will be provided in the conference website.

IMPORTANT DATES
Abstract submission: June 19, 2017
Full paper submission: June 26, 2017
Notification to authors: August 28, 2017
Final manuscript due: September 25, 2017

ORGANIZING COMMITTEE
General Chairs (Performance17@lists.cs.columbia.edu):
Yingdong Lu (IBM Research, USA)
Dan Rubenstein (Columbia University, USA)
Program Committee Co-Chairs:
Frank Kelly (Cambridge University, UK)
Dow Towsley (University of Massachusetts, USA)

5.2. Asian Control Conference
Contributed by: Ljubo Vlacic, l.vlacic@griffith.edu.au

THE 2017 ASIAN CONTROL CONFERENCE – ASCC 2017
Gold Coast Australia, 17 – 20 December 2017; https://www.ascc2017.com/
The Asian Control Conference will be held immediately after CDC 2017. If you will be attending CDC 2017 till 15 December you can then make your way from Melbourne to Gold Coast on Sunday, 17 December and enjoy the ASCC Welcome Reception there. The ASCC 2017 Proceedings will be published in Xplore.

The City of Gold Coast is a celebrated holiday experience set on one of Australia’s most spectacular natural stages. From pure, adrenalin-packed fun to natural indulgence, the contrasts of Australia's Gold Coast unite to deliver every holiday experience you could desire in one friendly place. A high quality accommodation at a special discount rate has been negotiated for the conference participants.

IMPORTANT DATES
- Regular Papers (drafts) 10 July 17
- Invited Session Proposals 10 July 17
- Workshop Proposals 10 July 17
- Author notifications 22 September 17
- Final Papers 01 October 17

5.3. Australian & New Zealand Control Conference
Contributed by: Ljubo Vlacic, l.vlacic@griffith.edu.au

ANZCC 2017 will be held simultaneously with ASCC 2017, at the same venue, the award winning Gold Coast Convention & Exhibition Centre.
The ANZCC 2017 details can be obtained from http://anzcc.org.au/ANZCC20
Specially designed and attractive registration package for those wishing to attend both events has been arranged.
Apart from traditional paper types, ANZCC 2017 will also be accepting PRESENTATION-ONLY papers. Presentation only papers will not be included in the Conference Proceedings. However, they will be a part of the Conference Program (if accepted) and their abstracts will be included in the Book of Abstracts which will be distributed to the conference participants.

IMPORTANT DATES
- Draft papers: 17 July 17
- Invited session proposals: 17 July 17
- Workshops proposals: 17 July 17
- Author notification: 20 September 17
- Final papers: 01 October 17

5.4. International Conference on Control, Automation and Systems
Contributed by: Hye-Soo Kim, conference@icros.org

2017 17th International Conference on Control, Automation and Systems (ICCAS 2017)
October 18(WED)-21(SAT), 2017
Ramada Plaza, Jeju Island, Korea
http://2017.iccas.org
2ND CALL FOR PAPERS:

The aim of the ICCAS is to bring together researchers and engineers worldwide to present their latest works, and disseminate the state-of-the-art technologies related to control, automation, robotics, and systems.

IMPORTANT DATES
Proposal for Invited/Organized Session (Mini-symposium)
- June 10, 2017: Submission Deadline
Regular Papers (3 - 6 pages) & Invited/Organized Session Papers (1 - 6 pages)
- June 15, 2017: Submission Deadline
- August 1, 2017: Notification of Acceptance
- August 31, 2017: Submission of Final Camera-ready Papers
Research Poster Papers (1 - 2 pages)
- August 22, 2017: Submission Deadline
- August 31, 2017: Notification of Acceptance
- September 7, 2017: Submission of Final Camera-ready Papers

PAPER SUBMISSION GUIDELINE: http://2017.iccas.org/?page_id=21

Indexed in: IEEE Xplore, EI compendex, and SCOPUS

PLENARY SPEAKERS
- Richard D. Braatz (Massachusetts Inst. of Tech., USA)
- Reza Moheimani (Univ. of Texas at Dallas, USA)
- Antonella Ferrara (Univ. of Pavia, Italy)
- Huijun Gao (Harbin Inst. of Tech., China)
- Atsuo Takanishi (Waseda Univ., Japan)

ACCOMMODATION: ICCAS 2017 participants can reserve rooms at the appointed hotels at a special (discounted) rate. View details: http://2017.iccas.org/?page_id=63

Organized by Institute of Control, Robotics and Systems (ICROS)
Technically Co-Sponsored by IEEE IES, IEEE CSS, IEEE RAS, SICE, ACA, CAA, CACS, ECTI, CAAI, and ISA

General Chair: Dong-il “Dan” Cho (Seoul Nat’l Univ., Korea / ICROS President)
Organizing Chair: Doyoung Jeon (Sogang Univ., Korea)
Program Chair: Hyosung Ahn (GIST, Korea)

5.5. Workshop on Networks and Control
Contributed by: Keith Glover, kg@eng.cam.ac.uk

WORKSHOP ON NETWORKS AND CONTROL, Wednesday 5 July 2017
Gonville and Caius College, University of Cambridge, UK.

A workshop to mark the contributions of Malcolm Smith to the Control field on the occasion of his 60th birthday.
Invited speakers (confirmed):
Chair: K. Glover
Website: http://www-control.eng.cam.ac.uk/Main/Workshop9
REGISTRATION NOW OPEN, DEADLINE: June 12, 2017

5.6. Workshop on Brain Dynamics and Neurocontrol Engineering
Contributed by: ShiNung Ching, shinung@wustl.edu
2017 Workshop on Brain Dynamics and Neurocontrol Engineering, June 25-27, 2017
** Travel awards are still available for students, postdocs and junior faculty. **
We are pleased to invite participants to the 2017 Workshop on Brain Dynamics and Neurocontrol Engineering at Washington University in St. Louis (St. Louis, MO, USA), to be held this summer (June 26-27).
Spurred by the development of both new technologies and new scientific initiatives, interest is coalescing around the use of dynamical systems and control theory to study the workings of the human brain. Neuroscience affords several research challenges and opportunities for the dynamics and control community, due to the immense complexity of the system at hand, the dynamics of which span many spatial and temporal scales. Understanding how these dynamics mediate brain function is a pivotal neuroscience question that is well-aligned with methodological approaches innate to systems and control engineering. The goal of this workshop is to provide a focused forum for the discussion of research synergy between experts from the dynamics, control and neuroscience communities.
For full information, including speaker list, award and registration details, please visit:
http://sites.wustl.edu/brain

5.7. IFAC World Congress Workshop on “Process Data Analytics”
Contributed by: Sirish L. Shah, sirish.shah@ualberta.ca
2017 IFAC World Congress workshop on:
Process Data Analytics
Speakers: Tongwen Chen, Biao Huang, Sirish L. Shah, Nina Thornhill and Jiandong Wang
For more details and registration visit link at:
https://www.ifac2017.org/workshops-and-tutorials
Time: Sunday, 9th July 2017; 9:00-17:30
Workshop outline
Process data analytic methods rely on the notion of sensor fusion whereby data from many sensors and alarm tags are combined with process information, such as physical connectivity of process units, to give a holistic picture of health of an integrated plant. The fusion of information from such disparate sources of data is the key step in devising methodologies for a smart strategy for process data analytics
In the context of the application of analytics in the process industry, the objective in this workshop is to introduce participants to tools, techniques and a framework for seamless integration of information from process and alarm databases complemented with process connectivity information. The discovery of information from such diverse and complex data sources can be subsequently used for process and performance
monitoring including alarm rationalization, root cause diagnosis of process faults, hazard and operability (Hazop) analysis, safe and optimal process operation. Such multivariate process data analytics involves information extraction from routine process data, that is typically non-categorical (as in numerical process data from sensors), plus categorical (or non-numerical or qualitative and binary) data from Alarm and Event (A&E) logs combined with process connectivity or topology information that can be inferred from the data through causality analysis or as obtained from piping and instrument diagrams of a process. The later refers to the capture of material flow streams in process units as well information flow-paths in the process due to control loops.

Target audience: The intended audience for this workshop would be industrial practitioners of control including vendors working in the area of on-line data logging and archiving, graduate students with interests in statistical learning and data science and academics.

Workshop Program
The following topics will be discussed in this workshop. Each topic will be accompanied by one or more industrial case study to convey the utilitarian value of the learning, discovery and diagnosis from process data.

- Overview of the broad analytics area with emphasis on its use in the process industry.
- Basic definitions and introduction to supervised and unsupervised learning: simple regression, classification and clustering.
- Data visualization methods; examination and analysis of data in a multivariate framework (in the temporal as well as the spectral domains).
- Data quality assessment: Outlier detection; filtering and data segmentation.
- Elements of statistical inference and learning including
 - Bayesian methods.
- Multivariate methods for data analysis: SVD, PCA, PLS, SVR.
- Case studies on nearest neighbour methods for multivariate detection and diagnosis of transient disturbances.
- Alarm data analysis: Detection and removal of nuisance alarms; root-cause analysis of alarms and alarm floods.
- Data-based causality analysis for identification of process topology.
- Future areas to explore in the use of statistical learning, data science and analytics for improved process operation.

6. Positions

6.1. PhD: Université Laval, Canada
Contributed by: André Desbiens, desbiens@gel.ulaval.ca

PhD: Université Laval, Canada

Three PhD positions are available at the LOOP (Laboratoire d’observation et d’optimisation des procédés – Process Observation and Optimization Laboratory), Université Laval, Québec City, Canada. The projects are in collaboration with the multinational biopharmaceutical Pfizer. They address industrial problems and the solutions will have significant impacts for Pfizer.

For pharmaceutical industries, automation and continuous processing is a way to become more competitive, to reduce production time, energy consumption and the amount of waste produced. Towards this objective,
the projects are:

Project #1 - Coating of the tablets: development of an in-line vision sensor providing film-coating properties (coating level, distribution across tablets, esthetical defects, etc.).
- Fractional factorial design
- Multivariate Image Analysis
- Partial Least Squares regression
- Validation of the machine vision sensor

Project #2 – Novel continuous drying of the granules (before they are compressed into tablets): safe and robust in-line minimization of the drying time and/or energy consumption while insuring a desired final humidity of the particles and avoiding their overheating.
- First-principles modelling and model calibration
- State estimation
- Model predictive control
- Real-time optimization

Project #3 - Freeze-drying of vials: safe and robust in-line minimization of the primary drying time and/or energy consumption while insuring that sublimation is completed and avoiding to exceed the collapse temperature.
- First-principles modelling and model calibration
- State estimation
- Model predictive control
- Real-time optimization
- Heating policies for various vials arrangements

The final stage of the three projects is to implement and validate the most promising approaches on pilot units.

Candidate profile:
- should have completed, or about to complete, a MSc degree in Electrical or Chemical Eng., or related areas,
- strong background in multivariate statistics and/or first-principles modelling and/or systems and control,
- solid programming skills in Matlab,
- ability to work in multi-disciplinary teams,
- excellent communication skills (oral and written) in English - a plus if knowledge of French (courses are given in French).

Please send a complete CV, a motivation letter and transcripts to Prof. André Desbiens (desbiens@gel.ulaval.ca) with the subject "E-Letter PhD position".

6.2. PhD: University Grenoble Alpes, France

Contributed by: Hassen FOURATI, hassen.fourati@gipsa-lab.fr

A PhD position is proposed on Advanced Modelling and Control of attitude dynamics for CubeSat, in department of Automatic Control at GIPSA-Lab (University Grenoble Alpes, France).

The link for the position is:
http://necs.inrialpes.fr/media/documents/openings/PhDs/2017-NanoBob_PhD.pdf
6.3. PhD: VERIMAG, France
Contributed by: Oded Maler, oded.maler@imag.fr

A PhD Position at Verimag, Grenoble, Tempo (Timed and hybrid Systems) Team
We are looking for a PhD candidate (see http://www-verimag.imag.fr/ maler/Looking-for-PhD-Candidates-2017.html for more details). Note that the candidate will have to compete on few positions and only candidate with an excellent record (notes, preliminary research. recommendation) are encouraged to apply.

6.4. PhD: University of Groningen, the Netherlands
Contributed by: Bayu Jayawardhana, b.jayawardhana@rug.nl

The centre on Data Science and Systems Complexity (DSSC) at University of Groningen, Netherlands, officially opens the call for applications for 10 PhD positions in the project DSSC COFUND, which is co-financed through the Marie Sklodowska Curie COFUND action under the European Commission’s Horizon 2020 Work Programme. MSc graduates in fields relevant to the DSSC such as mathematics, statistics, computer science, artificial intelligence, engineering, physics, bioinformatics, astronomy are invited to apply by 15 July 2017 through our vacancies website: http://www.rug.nl/about-us/work-with-us/job-opportunities/overview?details=00347-02S0005KFP

In their application the candidates will select one or several from the 18 projects available at the DSSC in which they are interested and which cover various topics in the areas Adaptive Models and Big Data, Complex Systems and Engineering, Advanced Instrumentation and Big Data. If selected, the candidates will be matched to one of the projects they opted for in their application. The successful candidates, who are expected to begin their appointment no later than 1 March 2018, will conduct research on 10 of the 18 interdisciplinary projects available at the DSSC.

Candidates must comply with the eligibility criteria required under the Marie Sklodowska Curie COFUND action. They should not have resided or carried out their main activity in the Netherlands for more than 12 months in the three years immediately before the reference date of the DSSC COFUND call deadline (15 July 2017) unless it was as part of a procedure for obtaining refugee status under the Geneva Convention. Moreover, they should qualify as early stage researchers, i.e., be in the first four years of their research careers, and not have been awarded a doctoral degree, by the reference date of the DSSC COFUND call deadline (15 July 2017).

More details about evaluation criteria and application documents are available on http://www.rug.nl/about-us/work-with-us/job-opportunities/overview?details=00347-02S0005KFP

6.5. PhD: Inria, France
Contributed by: Madalena Chaves, madalena.chaves@inria.fr

PhD thesis position at Inria:
Mathematical analysis, control design and coupling for models of biological oscillators
Mammalian cells have evolved highly sophisticated intracellular communication pathways to enable their development and growth, under multiple environmental stresses and stimulus. Two major cyclic processes are at the basis of cell development: the cell cycle and the circadian clock, both of which have been separately studied from many diverse points of view. In the context of project ICycle, our goal is to understand the communication pathways between these two primary cellular modules, using both mathematical and
simulation tools, control theory and synthetic biology techniques. From a mechanistic point of view, the interaction between cell cycle and circadian clock can be represented as a control theoretic problem: a “plant” or the system to be controlled, an “output” or a set of measurements of the system, an “input” which is an entry point into the system, allowing for regulation, and a “controller” function. However, many points are still unclear from experimental evidence, such as the outputs and entry points of regulation for each oscillator, the relationship between the frequencies of each cyclic module, possible controllers, etc. The main topic of this thesis is the design of control theoretical strategies for regulating and coupling two biological oscillators, control the strength of their interconnection, and the mutual adjustment of their frequencies and phases. The methods and techniques developed in this thesis will be applied to design and implement feasible control strategies to construct synthetic biology circuits reproducing the main features of the two oscillators, in a collaboration with F. Delaunay.

To learn more about the project and related PhD positions please check: https://project.inria.fr/icycle/phd-offers/

Background: A degree in applied mathematics (or similar), dynamical systems, control theory.

Applications accepted until June 12th.

Please send an email to madalena.chaves@inria.fr, with CV and names of two references.

The PhD thesis will be supervised by Madalena Chaves at Inria Sophia Antipolis (France).

6.6. PhD: University of Groningen, the Netherlands
Contributed by: Kanat Camlibel, m.k.camlibel@rug.nl

PhD: University of Groningen, the Netherlands

The Data Science and Systems Complexity COFUND Doctoral Programme (DSSC COFUND) at the University of Groningen offers a number of early stage researcher (ESR) positions co-funded through the Marie Sklodowska Curie COFUND action under the European Commission’s Horizon 2020 Work Programme. The DSSC aims to train highly skilled graduates who will use state of the art data methodology to understand the behaviour of complex systems and who can handle data and complexity problems for society at large.

Four of the projects are directly related to control of complex systems:

(a) Distributed methods to handle smart power microgrids. Keywords: Microgrids, Distributed Control Algorithms, Optimization, Nonlinear Systems, Complex Oscillatory Networks. Fields of expertise: Control Theory, Optimization, Dynamical Systems, Power Engineering, Network Science. Supervisory team: Prof. dr. Arjan van der Schaft, Prof. dr. Claudio De Persis Prof. dr. Kanat Camlibel

(b) Distributed control methods under communication constraints with applications to sensor networks in a smart industry setting. Keywords: Sensor Networks, Nonlinear consensus, Hybrid Systems, Self-triggered Algorithms, Coordination Control. Fields of expertise: Control Theory, Dynamical Systems, Signal Processing, Computer Science, Network Science. Supervisory team: Prof. dr. Claudio De Persis, Dr. Pietro Tesi, Prof. dr. Kanat Camlibel

(c) Cyber security with applications to both smart energy systems and smart industry. Keywords: Cyber-physical Systems, Networked Control Systems, Hybrid Systems, Power Networks, Smart Industries. Fields of expertise: Control Theory, Dynamical Systems, Cybersecurity, Computer Science, Network Science. Supervisory team: Prof. dr. Claudio De Persis, Dr. Pietro Tesi, Dr. Bart Besselink

(d) Tailor-made model reduction methods for integrated energy systems. Keywords: Networks of dynamical systems, structure preserving model reduction, smart energy systems, model reduction for networks, graph
simplification

Fields of expertise involved: Systems and control engineering, Feedback control theory, Mathematical modelling, Model reduction, Graph theory. Supervisory team: Prof. dr. Kanat Camlibel, Prof. dr. Jacquelen Scherpen, Dr. Bart Besselink

Eligibility criteria:
Applicants should:
* be in possession of a master’s degree or its equivalent in one of the fields relevant to the DSSC (e.g. mathematics, statistics, computer science, artificial intelligence, engineering, physics, bioinformatics, astronomy)
* not have resided or carried out their main activity in The Netherlands for more than 12 months in the three years immediately before the reference date of the DSSC COFUND call deadline (15 July 2017) unless it was as part of a procedure for obtaining refugee status under the Geneva Convention
* qualify as early stage researchers, i.e., be in the first four years of their research careers, and not have been awarded a doctoral degree, by the reference date of the DSSC COFUND call deadline (15 July 2017).

Evaluation criteria: We are searching for applicants who excel academically and professionally, are creative and independent, and have communication and leadership skills. Evaluation will focus on the candidates’:
* educational and professional background
* compatibility of research interests with the DSSC (fit with the research areas; motivation to conduct a PhD project at the DSSC; career plans)
* complementary skills (English proficiency and communication skills; creativity, independence, leadership).

Conditions of employment:
The terms of employment comply with the terms of the Collective Labour Agreement for Dutch Universities (CAO-NU). The PhD positions offered are for four years (48 months), at full-time employment. PhDs will receive a full-time appointment of 1 year with the perspective of extension for another 3 years. The extension depends on the outcome of the PhDs’ evaluation after 9 months from the beginning of their appointment. The evaluation assesses the possibility that the PhD student will successfully complete a thesis within the following 3 years.

Successful applicants are expected to begin their appointment no later than 1 March 2018.

All DSSC PhDs are required to complete a PhD thesis by the end of the employment period. The appointment requires that the PhD employee will devote up to 10% of the time to teaching.

Application procedure:
You may apply for this position until 14 July 23h59 / before 15 July 2017, local time, by means of the application form that can be found on http://www.rug.nl/about-us/work-with-us/job-opportunities/overview?details=00347-02S0005KFP.

6.7. PhD: University of Groningen - University of Twente, the Netherlands
Contributed by: Bayu Jayawardhana, b.jayawardhana@rug.nl

PhD advertisement of STW Smart Industry 2016 project on "Integrating models and real-time data for zero-defect manufacturing control systems"

Project description:
High-precision manufacturing pushes the limits of what is possible with conventional manufacturing systems. The development of the new generation of high-precision manufacturing systems relies on detailed understanding of the process disturbances which cause variation in the end-product. This project aims at
developing models for control of manufacturing processes which can be used for interpreting small variations in the process due to product-to-product disturbances. Such accurate and mature models can only be developed through integration of knowledge from high-fidelity physics-based models with knowledge obtained from large streams of sensor data. Integration of models and sensor data is key for the development of novel data analytic tools providing crucial causal information to the product-to-product variations which can subsequently be used by our novel data-driven control systems to pre-empt and to remove such variations in real-time.

The research consortium comprises of two universities (Univ. Groningen and Univ. Twente) and seven small-medium and large companies. In total, the project has four vacancies (two PhD students and two postdocs) with the following two main research activities: (R1). the development of model-based data analytics tools for inferring / obtaining accurate and mature models which are applicable for control of high-precision manufacturing systems; and (R2). the development of new provably-correct control design mechanisms towards a self-learning control architecture based on the integration of process models and real-time material, process and product information.

Position description:
In this advert, we will hire one PhD student who will focus on research activity (R2). In particular, he/she will develop novel integrated data-driven & model-based control algorithm that enables the integration of models and real-time process data for enabling zero-defect manufacturing systems. The PhD appointment is for four years. The PhD candidate has to complete the graduate courses offered by the Dutch Institute for Systems and Control (DISC, http://disc.tudelft.nl).

Qualifications:
You have:
- Masters degree in Electrical & Electronics Engineering, or Mechanical Engineering, or Mechatronics, or Computer Science, or other equivalent degree programmes from top universities;
- Strong academic credentials, written and spoken English proficiency;
- Strong knowledge in systems and control, mechatronics and mathematics.

About the organization:
Since its foundation in 1614, the University of Groningen has enjoyed an international reputation as a dynamic and innovative center of higher education offering high-quality teaching and research. Study and career paths in a wide variety of disciplines encourage currently more than 30,000 students and researchers to develop their individual talents. Belonging to the best research universities in Europe, the top 100 universities in the world and joining forces with prestigious partner universities and networks, the University of Groningen is truly an international place of knowledge.

Within the Faculty of Mathematics and Natural Sciences (FMNS), the Engineering and Technology institute Groningen (ENTEG) conducts engineering science research and covers a broad area of mechanical engineering, control engineering, materials engineering, and (bio)-chemical engineering. The research unit Discrete Technology and Production Automation (DTPA) is focused on the dynamical modeling, analysis, mechatronics and control of complex electro-mechanical systems. The application areas include smart energy systems, mechatronic systems, robotic systems, as well as, multi-agent autonomous systems.

Information:
Interested candidates please send your inquiries together with your detailed CV and a 1-page letter of motivation or research statement to: b.jayawardhana@rug.nl and p.tesi@rug.nl (with f.fokkens@rug.nl in cc).

Please specify the following text in the subject: Data-driven control design - PhD application.
6.8. PhD: University of Grenoble, France
Contributed by: Paolo Frasca, paolo.frasca@gipsa-lab.fr

A phd position on “Modeling and Control of Cyber-Social Dynamics” under the supervision of A. Kibangou and P. Frasca is available at the University of Grenoble, beginning October 2017. Further information is available at http://necs.inrialpes.fr/media/documents/openings/PhDs/2017-Cybersocial_Dynamics_PhD.pdf. Interested candidates should contact us by *June 5* (paolo.frasca@gipsa-lab.fr, alain.kibangou@gipsa-lab.fr).

6.9. PhD: WASP, Sweden
Contributed by: Bo Wahlberg, bo@kth.se

PhD: WASP announces 22 PhD student positions

Wallenberg Autonomous Systems and Software Program (WASP) is Sweden’s largest individual research program ever, and provides a platform for academic research and education, fostering interaction with Sweden’s leading technology companies. The program addresses research on autonomous systems acting in collaboration with humans, adapting to their environment through sensors, information and knowledge, and forming intelligent systems-of-systems. WASP’s key value is research excellence in autonomous systems and software for the benefit of Swedish industry.

The graduate school within WASP is dedicated to provide the skills needed to analyze, develop, and contribute to the interdisciplinary area of autonomous systems and software. Through an ambitious program with research visits, partner universities, and visiting lecturers, the graduate school actively supports forming a strong multi-disciplinary and international professional network between PhD-students, researchers and industry.

The graduate school provides added value on top of the existing PhD programs at the partner universities Chalmers, KTH Royal Institute of Technology, Linköping University, Lund University and Umeå University, providing unique opportunities for students who are dedicated to achieving international research excellence with industrial relevance.

We are now offering up to 22 PhD positions of which several relate to control systems. Information about specific projects and on how to apply can be found at http://wasp-sweden.org/wasp-announces-22-phd-student-positions/

Last date for application: 2017-06-15

6.10. PhD: LAAS Lab, France
Contributed by: Aneel Tanwani, aneel.tanwani@laas.fr

We are seeking a PhD candidate within the team Methods and Algorithms in Control (https://www.laas.fr/public/en/mac) at LAAS lab in Toulouse, France. The topic of this PhD will be focused on studying stability and robustness notions for switched dynamical systems with particular emphasis on developing numerical techniques, and its applications in modern control systems. The thesis will be supervised by Aneel Tanwani and Luca Zaccarian. Serious candidates with strong background in control theory and a good knowledge of applied mathematics are encouraged.
To apply for this position, students must contact at least one of the supervisors by email before 9th June 2017. Short-listed candidates will be contacted to provide further information, and the successful candidate will be informed of the final decision by 30th June 2017. The thesis will start in September 2017 and is expected to last for three years. The monthly stipend for the entire duration is roughly 1500 euros net. Further information and details are available at http://homepages.laas.fr/atanwani/edsys17.pdf

6.11. PhD: University of New South Wales, Australia
Contributed by: Daoyi Dong, d.dong@unsw.edu.au

Scientia PhD Scholarships at UNSW
This project aims to develop distributed estimation and control methods for quantum networks. Quantum networks play a vital role in the development of powerful quantum technology, and benchmarking and controlling quantum networks has been an important task in the development of the next generation technology. The project will advance key knowledge and provide effective methods to enable us to identify and control quantum networks for a variety of applications arising in the emerging quantum technological revolution. The scholarship provides the following support:

- Work on high quality research projects with the high quality supervisory teams in world class environments
- AUD$40,000 per annum stipend for four years
- Tuition fees covered for the full 4 year period
- Coaching and mentoring will form a critical part of your highly personalised leadership development plan
- Up to AUD$10,000 each year to build your career and support your international research collaborations

More application information could be found at:
http://www.2025.unsw.edu.au/apply/

If you are interested in applying for the scholarship, please contact Dr Daoyi Dong (d.dong@unsw.edu.au), Prof Valeri Ougrinovski (v.ougrinovski@adfa.edu.au) or Dr Michael Hush (m.hush@unsw.edu.au)

6.12. PhD: University of Bordeaux, France
Contributed by: Tudor-Bogdan Airimitoaie, tudor-bogdan.airimitoaie@ims-bordeaux.fr

PhD position at the IMS laboratory, University of Bordeaux, France
Supervisors: Pierre Melchior (Associate professor), Franck Cazaurang (Professor), Tudor-Bogdan Airimitoaie (Associate professor)
Thesis title: Development of methods for the linearization of flat integer or fractional systems: application to path planning and fault detection of thermal systems
Start date: September 2017
Duration: 3 years
Closing date for applications: July 2nd 2017
Funding: 3 years financing by the University of Bordeaux
Description:
Flatness is a relatively new concept that can be used to invert the dynamic equations governing the functioning of certain systems. As such, for the class of flat systems it is easy to design path tracking and
fault detection algorithms. The non-integer derivation operator is well adapted for the modelling of thermal diffusivity phenomena in materials. The objective of this thesis is to develop tools for the linearization of flat nonlinear integer or non-integer systems and their application for path planning and system diagnosis. This involves performing formal calculations on the principles of flatness and establishing the analytical expressions of the flat outputs for fractional nonlinear systems. The different definitions of the non-integral derivative (Riemann-Liouville, Caputo, Grünwald) will be used. Finally, application to a thermal test bench available at the IMS laboratory is planned for validation of the proposed methods.

Candidate profile:
We are looking for a candidate with an MSc degree in Systems and Control or Applied Mathematics. Good knowledge of formal calculus, strong programming skills in Maple or Matlab MuPAD and a very good academic record are necessary. A background in differential geometry or fractional systems would be highly appreciated.

To express interest:
Please send the following documents to tudor-bogdan.airimotoaie@ims-bordeaux.fr and pierre.melchior@ims-bordeaux.fr and franck.cazaurang@ims-bordeaux.fr
- motivation letter
- detailed CV
- bachelor and master transcripts (including list of courses with corresponding grades)
- name and email of two references

Contributed by: Nikolaos Freris, nf47@nyu.edu

RESEARCH OPPORTUNITIES IN CYBERPHYSICAL SYSTEMS
Positions available: Ph.D. Students, Postdoctoral Fellows, Research Assistants

The Cyberphysical Systems Lab at New York University Abu Dhabi is hiring researchers at all levels in Electrical Engineering, Computer Science, Applied Mathematics, or relevant fields.

About: The focus of the Cyberphysical Systems Lab (CPSLab) is to conduct interdisciplinary research across a wide range of topics and applications related to cyberphysical systems, such as: a) distributed algorithms for estimation, optimization and control, b) big data: data mining/machine learning algorithms, c) wireless sensor networks, d) system theory: control & optimization, e) signal processing: sparse sampling and online algorithms, as well as applications in signal processing, transportation, cybersecurity, networking, robotics, and biomedical modeling.

Requirements: Research Assistant and Ph.D. applicants must hold (or be close to completing) an MS degree, and Postdoctoral Fellows a Ph.D., in Electrical Engineering, Computer Science, or Applied Mathematics with significant research experience in at least one of the aforementioned areas. Ph.D. applicants need to also apply directly to NYU for admission by Dec. 15. A proven publication record, solid mathematical background, excellent communication skills, and the ability to work in multi-disciplinary teams are essential. Applicants must submit a CV, research statement, cover letter with a brief research plan, along with the names and contact information for three recommenders in a single PDF file to Prof. Nikolaos Freris (nf47@nyu.edu).

Start date & Salary: The start date is flexible. A very competitive salary and benefits package (including relocation, housing, insurance, transportation and conference travel support) are provided – note: UAE do not levy any income tax.
For more information, please visit: https://wp.nyu.edu/cpslab

About NYUAD: New York University has established itself as a Global Network University, a multi-site, organically connected network encompassing key global cities and idea capitals. The network has three foundational degree-granting campuses: New York, Abu Dhabi, and Shanghai complemented by a network of 12 research and study-away sites across five continents. Faculty and students circulate within the network in pursuit of common research interests and the promotion of cross-cultural and interdisciplinary endeavors, both local and global. Entering its sixth year, NYU Abu Dhabi has recruited a cohort of faculty who are at once distinguished in both research and teaching. Our students are drawn from around the world and surpass all traditional recruitment benchmarks, both US and global. NYU Abu Dhabi’s highly selective liberal arts enterprise is enhanced by an institute for advanced research, sponsoring cutting-edge projects across the Arts, Humanities, Social Sciences, Sciences, and Engineering. NYUAD is housed at a newly built campus in the vibrant city of Abu Dhabi, the capital of UAE. NYUAD is an Equal Opportunity/Affirmative Action Employer

6.14. PostDoc: Shanghai Jiao Tong University, China
Contributed by: Weidong Zhang, wdzhang@sjtu.edu.cn

Postdoctoral position in Shanghai Jiao Tong University, China (Optimization & Control)
The Optimization & Control Engineering Research Center of Shanghai (in the Department of Automation, Shanghai Jiao Tong University, China) offers 3 postdoc positions in control engineering as soon as possible thereafter. We are interested in candidates in the broad areas of advanced control theory, multi-agents formation, machine learning, pattern recognition, industrial networked control systems, etc.

Requirements and qualifications:
- PhD degree
- Documented experience with research dissemination in international scientific journals
- Experience with writing research applications
- Good communication skills in English or Chinese
- Self-motivation and the ability to work both independently and as a team player with researchers from different disciplines

Main tasks:
- Active involvement in research efforts
- Supervision of student projects and thesis at both master and Ph.D. levels

Salary and others:
- RMB 120-200k/year (approximately, 18-30kUSD)
- It is a 2-year position and can be extended to 5 years

Required documents
- One self-recommendation letter covering your research statements, your achievements, as well as your possible requirements from us
- A list of your publications

For further information, please contact Prof. Dr. Weidong Zhang, Email: wdzhang@sjtu.edu.cn, tel: +86-21-34204019. Address: Dongchuan Road 800, Shanghai Jiaotong University, Shanghai 200240, China.
6.15. PostDoc: UIUC, USA
Contributed by: Naira Hovakimyan, nhovakim@illinois.edu

A postdoctoral position is available in Advanced Controls Research Lab of UIUC. The ideal candidate must have a doctorate in mathematics with emphasis on statistical learning. The scope of the projects involves learning for robotic systems that operate in challenging environments. For consideration, please email CV and 3 references to Naira Hovakimyan, at nhovakim@illinois.edu.

6.16. PostDoc: Centre for Energy Systems Integration, UK
Contributed by: Ken McKinnon, k.mckinnon@ed.ac.uk

Applications are invited for the post of Postdoctoral Research Associate in the multi-scale optimization of energy systems. The post is available for an immediate start for 36 months. The precise start date is flexible.

The post holder will be part of The Centre for Energy Systems Integration (CESI), a new £20M EPSRC consortium project involving Newcastle, Edinburgh, Durham, Heriot-Watt and Sussex Universities. The aim of this project is to understand the complex relationship between energy supply, demand and infrastructure and how this will evolve in the future.

Further information can be found on the Centre’s website: http://www.ncl.ac.uk/cesi/

Within CESI, Edinburgh is responsible for developing modular multi-scale stochastic planning and operational models and solution methods. Operational and planning models operate over different time scales, and local area energy networks need to operate in an integrated way in regional, national and international scale models. A single monolithic model at high time and spatial resolution is computationally intractable, so our focus will be on developing decomposition approaches that calibrate and select sub models at the appropriate spatial and time scales.

The starting salary will be in the range £32,004 - £38,183, depending on experience.

The closing date for receipt of applications, including reference letters, is 12th June 2017.

For further particulars and how to apply see https://www.vacancies.ed.ac.uk/pls/corehrrecruit/erq_jobspec_version.4.jobspec?p_id=039891

Informal enquiries are encouraged; please contact Professor Ken McKinnon initially by e-mail: k.mckinnon@ed.ac.uk.

6.17. PostDoc: Ghent University Global Campus, South Korea
Contributed by: Shodhan Rao, Shodhan.Rao@ghent.ac.kr

PostDoc Position in Ghent University Global Campus, Incheon, South Korea

Project Description: The advertised position is a part of a project titled “Development of Smart Polymorphic Continuous Automatic Packaging System” which is funded by Korea Evaluation Institute of Industrial Technology (KEIT). The three partner organizations involved in the project are ACE Machinery, Korea Institute of Science and Technology (KIST) – Europe and Ghent University Global Campus (GUGC). In general, the project aims to develop a smart automated packaging system that is capable of adapting to changes in object shapes, sizes, production scale, rate, layout design and throughput. At Ghent University
Global Campus, we seek a researcher who would eventually be able to design an intelligent control system for the smart packaging system being designed at ACE machinery, that takes as input the production demand and then accordingly synchronizes the performance of the different modules of the packaging system. As such, the researcher is expected to work in close collaboration with partners from ACE machinery involved in this project, understand their specific requirements and eventually design an electronic control system for the smart packaging machines.

Further the candidate is expected to conduct research on the development and implementation of an iterative learning control algorithm in order to improve the performance of the electronic control system designed in the first phase of the project. The candidate is also expected to contribute on the one hand towards disseminating results in the form of conference presentations, journal publications and patent applications and on the other hand towards certain project administrative tasks that include annual report writing and internal accounting of the expenses made towards the project. The duration of the project is roughly two and a half years subject to successful annual progress.

Profile of the candidate: We are looking for candidates with the following qualifications and skills.
- A PhD degree in Electronics and/or Electrical Engineering with specialization in Control or Robotics.
- A strong command and fluency in English.
- Good oral and written communication skills in English.
- Excellent academic track record.
- A strong motivation to perform research in the area of industrial control systems.
- Strong analytical/mathematical skills.
- An experience in the design of industrial control systems is desirable.
- Willingness to learn Korean language.

The remuneration for the job will be commensurate with Korean standards for a PostDoc position. In addition, free accommodation within the campus is also foreseen. We provide a stimulating research environment within the Biotech Data Science Center of Ghent University Global Campus (GUGC), which is the first campus of Ghent University outside Belgium. This campus is situated in Songdo International City, Incheon, South Korea. GUGC integrates educational and research facilities in a single building. Ghent University has the ambition to organize a first-rate, truly European education in Asia and to develop excellent research in the fields of Molecular biotechnology, Environmental and Food technology.

Interested candidates should send their applications before June 30th, 2017 by email to Shodhan.Rao@ghent.ac.kr with a CV, copies of transcripts and degrees and a motivation letter (please merge all the documents in one file). The candidate will receive an e-mail confirming receipt of the application.

Contributed by: Antoin Girard, antoine.girard@l2s.centralesupelec.fr

Postdoctoral Position - Towards programmable cyber-physical systems: a symbolic control approach
Supervisors: Antoine (Antoine@l2s.centralesupelec.fr)
Location: Laboratoire des Signaux et Systèmes - L2S, CNRS – CentraleSupélec – Univ. Paris-Sud – Univ. Paris-Saclay, Gif-sur-Yvette, France
Duration: One year, starting September 2017, with possibility for one additional year
One postdoctoral position is opened within the PROCSYS project, funded by an ERC Consolidator Grant.
Context and Objectives:
Cyber-physical systems (CPS) consist of computational elements monitoring and controlling physical en-
The main objective of the PROCSYS project is to propose a general framework for the design of programmable CPS that will allow engineers to develop advanced functionalities using a high-level language for specifying the behaviours of a CPS while abstracting details of the dynamics. Controllers enforcing the specified behaviours will be generated from a high-level program using an automated model-based synthesis tool. Correctness of the controllers will be guaranteed by following the correct by construction synthesis paradigm through the use of symbolic control techniques: the continuous physical dynamics is abstracted by a symbolic model, which is a discrete dynamical system; an interface consisting of low-level controllers is designed such that the physical system and the symbolic model behaves identically; a high-level symbolic controller is then synthesized automatically from the high-level program and the symbolic model.

Work description:
We will develop a high-level language, based on the formalism of hybrid automata, which will enable to specify rich behaviours while enabling the development of efficient controller synthesis algorithms. The project will also tackle two bottlenecks in the area of symbolic control. Firstly, scalability issues will be addressed by the computation of more compact symbolic models and by controller synthesis algorithms that require only partial exploration of the symbolic models. Secondly, robustness will be ensured at all levels of control by developing novel algorithms for the synthesis of robust interfaces and of symbolic controllers.

Background of the candidate:
The candidate must hold a PhD in control theory or computer science with a strong mathematical background. A prior experience in the area of hybrid systems is recommended. Programming skills are also needed. Applications must include a cover letter, a detailed CV, the preprints of the two most significant publications, and two references who may be asked to provide letters of recommendation. All documents should be sent in a single pdf file to the following email addresses: Antoine@l2s.centralesupelec.fr

6.19. PostDoc: Huazhong University of Science & Technology, China
Contributed by: Ye Yuan, yye@hust.edu.cn

Prof. Ye Yuan (http://yy311.github.io) is looking for a number of postdoc researchers and visiting researchers starting as soon as possible at Huazhong Artificial Intelligence Lab (HAIL), Huazhong University of Science & Technology (HUST), Wuhan, China. The research project is broadly on the development of novel learning and control theory with application to cyber-physical systems (robotics and power systems).

1. For Postdoc, we offer

- A competitive salary (at least Chinese RMB 200,000 per year plus housing allowance, negotiable);
- Possibilities for the Postdoc to spend time at world-leading universities (such as UC Berkeley and Caltech) to take specialized courses and work with collaborators there;
- Experimental platform (Vicon+Crazyflies, GPU cluster, UR3 robot+Kinect, Hardware in the loop Power simulator)
- Full contract for 2 years with the possibility of renewal up to 5 years contingent on performance;
- Possibilities for the Postdoc to stay at HUST as a lecturer or an associate professor afterwards.

2. For visiting researchers, we offer

- A highly competitive salary depending on the qualification (per month);
- Travel cost and housing
- Experimental platform (Vicon+Crazyflies, GPU cluster, UR3 robot+Kinect, Hardware in the loop Power simulator)
3. Your Profile

- A Ph.D. degree in Control Theory, Power Systems, Mathematics, Computer Science, or a closely related field;
- An excellent background in one of the following areas: system identification, control theory, machine learning, robotics.

Interested candidates should send their CV (with names of at least two references) and a cover letter (for postdoc candidates) describing their specific interest and how their background fits the qualifications to Prof. Ye Yuan (ye.yuan@outlook.com). All applications will be treated in the strictest confidence.

6.20. PostDoc: University of Exeter, UK

Contributed by: Christopher Edwards, c.edwards@exeter.ac.uk

Postdoctoral Research Fellowship in Modelling and Control
Location: University of Exeter
Department: College of Engineering Mathematics and Physical Sciences
Reporting To: Prof C. Edwards and Prof M. Belmont

The full time post is available from 1 July 2017 for 3 years.

Exeter University, UK is a Russell Group university boasting a vibrant academic community with over 21,000 students. Ranked in the top 1% of universities in the world, 98% of our research is rated as being of international quality and focuses on some of the most fundamental issues facing the world today. We encourage proactive engagement with industry, business and community partners to enhance the impact of research and education and improve the employability of our students.

The post: The College wishes to recruit a Senior Research Fellow to lead a project on Control of Launch and Recovery in Enhanced Sea-States. The goal is to extend the range of sea-states in which existing wave limited maritime operations can be safely carried out. Important examples of these operations are the launch and recovery from a mother-ship of small craft, manned and unmanned air vehicles and submersibles. The proposed work is closely coupled to two already funded EPSRC projects under the Launch and Recovery Co-Creation Initiative. This EPSRC funded post is available from 1 July 2017 for 3 years. The successful applicant will be responsible for delivering new fundamental operations and control research and providing the basis for the creation of a real-time decision support system for vessel operators responsible for Launch and Recovery at sea.

About you: The successful applicant will possess a PhD or equivalent qualification/experience in a related field of study and will have recognised expertise in the areas of system modelling and control and possess in-depth understanding of this specialism to enable the development of new knowledge and understanding within the field. In addition, the successful applicant will provide academic leadership to research teams, lead and develop internal and external networks and develop links with external contacts in order to foster collaboration and generate income. Applicants will possess proven expertise in the areas of systems modelling and control and highly developed skills in Matlab & Simulink. A wide range of modelling activities will need to be undertaken during the project encompassing classical Lagrangian approaches for the winch/cable/vessel elements and surrogate modelling techniques to predict the mothership response to the sea environment. The subsequent development of nonlinear observers for disturbance estimation and their integration as part of the launch and recovery control system is another key facet of the work to be undertaken.

For further enquiries contact: Prof C Edwards c.edwards@exeter.ac.uk

Back to the contents
Contributed by: Mikael Johansson, mikaelj@kth.se

The School of Electrical Engineering at KTH, Stockholm, Sweden invites applications for a postdoctoral position in the area of large-scale optimization, decision-making, and control. Applicants should have a Ph.D. in a relevant area, a vision and ambition for their own research, and a proven track record of scientific accomplishments and/or publications in leading international journals.

The position is created with the support from a five-year project on basic research for “Engineering the Interconnected Society” from the Knut and Alice Wallenberg Foundation, and offers many opportunities for collaborative work with students, postdocs, and faculty at the School of Electrical Engineering and the ACCESS Linneaus Center.

The position is available for one year, with the possibility of extension for another year. We follow postdoctoral best practices (http://cra.org/resources/best-practice-memos/computer-science-postdocs-best-practices/) to support the successful candidate in her or his career.

Applications should contain a CV, a motivational letter summarizing past achievements and current research interests, and contact information for one-two references. The applications should be addressed to Mikael Johansson, mikaelj@kth.se.

Back to the contents

6.22. PostDoc: Technical University of Munich, Germany
Contributed by: Martin Buss, mb@tum.de

Research Opportunities Week
April 16 – 20, 2018

Take this unique opportunity to experience the Technical University of Munich (TUM) and its research environment first-hand. TUM invites you to Munich for a fully-funded one-week visit. Afterwards, all candidates interested in pursuing a postdoc at TUM will be eligible to apply for a one-year TUM University Foundation Fellowship. Are you a young researcher looking to boost your career in Munich? Send in your application for one of the 50 Postdoc Mobility Travel Grants at the Technical University of Munich.

Application and further information on TUM’s Research Opportunities Week: www.tum.de/postdoc

Contact:
TUM ForTe: postdoc@tum.de

Back to the contents

6.23. PostDoc: University of California at Santa Cruz, USA
Contributed by: Ricardo Sanfelice, ricardo@ucsc.edu

A postdoctoral scholar position is available at the Hybrid Systems Laboratory at the Department of Computer Engineering, University of California in Santa Cruz, California.

The research focus of this position is the generation of design tools for estimation, control, and synchronization algorithms. The emphasis of the research is on distributed systems with hybrid dynamics, in particular, due to the use of local algorithms that self-reconfigure to cope with limited computational capabilities or with sporadic availability of information. Expertise in feedback control (nonlinear, MPC, hybrid), hybrid systems, and multiagent/networked systems will be key. The results will have applications to a wide range of hybrid and cyber-physical systems, such as distributed power systems and unmanned vehicle systems.
Candidates with a Ph.D. in engineering or applied math, with a strong theoretical background and required expertise are encouraged to apply by submitting via email to Prof. Ricardo Sanfelice (ricardo@ucsc.edu) the following: 1) a cover letter, 2) a detailed curriculum vitae, including educational background and a list of publications, 3) two publications representing the candidate’s research work, and 4) contact information for at least two academic references.

Review of applications will start on July 1, 2017. Though flexible, the suggested start date for the position is September 1, 2017 and for a duration of one year, renewable depending on performance.

More information about the research at the Hybrid Systems Laboratory at the University of California in Santa Cruz is available at https://hybrid.soe.ucsc.edu

6.24. PostDoc: United States Naval Academy, USA
Contributed by: Daniel Opila, opila@usna.edu

Postdoc: US Naval Academy, Annapolis MD
Cyber-Physical Anomaly Detection in Electric Power Systems

The Resilient Cyber-Physical Systems group at the United States Naval Academy is seeking a candidate for a funded two-year postdoctoral position with the possibility of renewal. The research is sponsored by the Office of Naval Research (ONR) and is subject to availability of funds. This research position involves:

1. Conducting research on detection of anomalies and attacks on small-scale power grids also known as microgrids.
2. Instrumentation and hardware testing on a low voltage, low power research test-bed microgrid.
3. Assisting undergraduate independent research projects.

The appointee will be expected to work closely with USNA faculty, students, multi-university research collaborators, experts from Navy Labs and other DOD entities, and private industry. A variety of active projects span academic, government, and industrial research. The academy is a charter member of the Electric Ship Research and Development Consortium (www.esrdc.com) and heavily involved with various Naval labs and program offices. The supervising faculty have a mix of experience in academia, industry, Navy ship design offices, and as active-duty Naval officers. Applicants must have a Ph.D. in electrical engineering, mechanical engineering, control systems engineering, math, computer science, physics or a closely related area.

Please see the full ad here:
http://www.usna.edu/HRO/jobinfo/CyberAnomalyPowerPostDoc.php

6.25. Faculty: Harbin Institute of Technology, Shenzhen, China
Contributed by: Yunjiang LOU, louyj@hit.edu.cn

Faculty: Dept. of Automation, Harbin Institute of Technology, Shenzhen, China

Assistant Professor, Associate Professor, and Full Professor positions are open for application.

Harbin Institute of Technology, Shenzhen (HITSZ) is pleased to announce openings for faculty positions and is inviting highly qualified applicants to join the Department of Automation in areas related to control system engineering.
About the university

Founded in 1920, Harbin Institute of Technology (HIT) has remained on the top 10 list of the Best Universities in China. HIT enjoys the fame as the leading engineering school in China.

In 2002, HIT and the Shenzhen Municipal Government created HIT Shenzhen Graduate School (HITSZ) in the University Town of Shenzhen. Together with Graduate Schools of Tsinghua and Peking University, HITSZ is an indispensable part of the Shenzhen-Hong Kong research and innovation base. We strive to maintain the academic excellence of HIT, and we are dedicated to top quality, innovation and internationalization.

HITSZ is a publicly funded institute located in the center of China’s Silicon Valley: The Shenzhen High Tech Park. New faculty members will have the opportunity to participate in building the department and moving it forward in exciting new directions. Ample opportunities also exist for collaborating with the vast manufacturing, IT and other high-tech industries in the region.

Who should apply?

Strong applicants with a PhD degree in control, systems, computer vision, robotics, manufacturing, mechatronics, big data and machine learning, and other related areas will be considered (the medium of instruction is English). The appointments will be made at the level of assistant professor, associate professor, full professor (applications for visiting appointments/postdoctors will also be considered).

Salary and Benefits

HITSZ offers performance-based fast promotion scheme, competitive salaries, medical benefits, and accommodation allowance.

What is required in an application pack?

- A covering letter
- A full academic CV
- Personal Statement (including statement of teaching and research)
- Transcript of grades for B.Sc., M.Sc., and Ph.D. degrees
- Details of three references

Application deadline is December 31, 2017; however, review of applications will begin immediately so applicants are encouraged to apply early. Interested candidates should send their application pack for consideration to Ms. Hong Yuan (yuanhong@hit.edu.cn). All inquiries should be addressed to Ms. Hong Yuan (yuanhong@hit.edu.cn).

6.26. Faculty: Zhejiang University of Technology, China

Contributed by: Qiu Xiang, qiuxiang@zjut.edu.cn

Faculty Position: Zhejiang University of Technology, Hangzhou, China
http://www.auto.zjut.edu.cn/WebSite/Job/JobList.aspx

Zhejiang Control Science and Engineering First-Class (Class A) Discipline Recruitment Announcement

Zhejiang University of Technology (ZJUT), sitting by the beautiful West Lake, Hangzhou, is a Zhejiang Province and the Ministry of Education co-supported, provincially governed key university, who owns one of the only 14 Collaborative Creation Centers in the first initiative of the state “2011 Program”. ZJUT has its beautiful campus covering more than 3000 mu, which accommodates 24 Colleges, more than 37,000 full-time students and more than 3,300 staffs. ZJUT is proudly to have 2 self-owned and 2 sharing Fellows of the Chinese Academy of Engineering, as well as more than 1400 faculties with senior professional titles. ZJUT
has State Key Disciplines, State Engineering Research Centers, State University Science Parks, Centers for Postdocs, as well as the power of awarding Doctors, Masters, MBAs and recruiting foreign students and those from Hong Kong, Macao and Taiwan.

The Control Science and Engineering Discipline within the College of Information Engineering was one of the Priority-among-Priorities Disciplines (selected by Zhejiang Provincial Government in 2009), and is now one of the Zhejiang First-Class (Class A) Disciplines in the first initiative of the Program in 2015. The Discipline now has the Doctoral Program at the first-level discipline, the Center for Postdocs, and the Zhejiang Collaborated Key Laboratory of Embedded Systems. The College of Information Engineering where the Discipline is in has 5 undergraduate programs: Automation, Electrical Engineering and Its Automation, Electronic Information Engineering, Communication Engineering, and Electronic Science and Technology. The Discipline is now recruiting faculties in the following areas at the levels of State and Zhejiang Provincial “1000 Plan” high-level talents, Zhejiang “Qianjiang Scholars”, ZJUT “Yunhe Specially-Appointed Professors”, “ZJUT Professors”, outstanding PhDs and postdocs, etc.

(1) Control Science and Engineering, including advanced control theory, robotics, machine vision, pattern recognition, industrial networked control systems, MES, etc.

(2) Electrical Engineering, including electric drive, power electronics, new energy, etc.

(3) Mechatronic Engineering, including high-precision servo control of mechatronic devices, the modelling and dynamic analysis of robots, etc.

(4) Computer Science and Technology, including smart city, smart healthcare, big data, cloud computing, IoT, industrial control software, etc.

A. Selection criteria

High-level talents (Changjiang Scholars, 1000 Plan Scholars, Qianjiang Scholars, etc.) You have major achievements and influence in your research area that have already been recognized by national and international researchers, or have great potentials of future development; You also meet the criteria of corresponding talents programs.

ZJUT Professors /Associate Professors You have a PhD degree obtained from a recognized university or research institutes with at least one year of oversea research experience in a well-known foreign institute; You have research achievements recognized by national and international researchers; Your application also passes the review process at the university level (ZJUT).

Outstanding PhDs/Postdocs You have a PhD degree obtained from a recognized university or research institute; You have high-quality research outputs and the professional skills required by a university lecturer, and great potentials of your future career.

B. Salary and welfare

(1) National-Level Top Tier Talents: Fellows of Chinese Academy of Sciences or Chinese Academy of Engineering, “Special Support Program” Distinguished Talents, Principal Investigators of NSFC Innovative Research Team, or other talents at the equivalent level. Treatment:Negotiation on the case by case basis.

(2) National-Level Top Tier Talents:National “1000 Plan” Scholars (long-term), Changqiang Scholars, NSFC Distinguished Young Scholars, “Special Support Program” Outstanding Talents, winners (rank first) of three major national science awards, or other talents at the equivalent level. Salary (CNY):≥700K /Year; Housing Benefit(CNY):3M-5M; Startup Funds(CNY):Case by case.

(3) National-Level Young Talents: “Special Support Program” Outstanding Young Talents, “1000 Plan” Young Scholars, “Changjiang Young Scholars, NSFC Outstanding Young Scholars, 973 Program Young Scholars, “Millions of Talents Program” Scholars, or other talents at the equivalent level. Salary (CNY):≥450K /Year; Housing Benefit(CNY):1.5M-2.5M; Startup Funds(CNY):1M-3M.
(4) Provincial-and-Ministry-Level Talents, Yunhe Specially-Appointed Professors, CAS “100 Plan” Scholars, Zhejiang "Qianjiang Scholars", Zhejiang “1000 Plan” (long-term) Scholars, or other talents who have made significant academic contributions with great potentials of development and who are awarded “Yunhe Specially-Appointed Professors” after the review of ZJUT. Salary (CNY): ≥350K /Year; Housing Benefit (CNY): 1.5M; Startup Funds (CNY): 0.5M-1M.

(5) ZJUT Professors, ZJUT Associated Professors: You have a PhD degree obtained from a recognized university or research institutes with at least one year of oversea research experience in a well-known foreign institute; You have research achievements recognized by national and international colleges; Your application also passes the review process at the university level. Salary (CNY): Salaries at the appropriate levels; Housing Benefit (CNY): 0.4M-0.5M; Startup Funds (CNY): 0.1M-0.2M.

(6) Outstanding PhDs/Postdoctors: You have a PhD degree obtained from a recognized university or research institute; You have high-quality research outputs and the professional skills required by a university lecturer, and great potentials of your future career. Salary (CNY): Salaries at the appropriate levels; Housing Benefit (CNY): 0.3M.

(7) Postdocs (leading to a faculty): Besides the basic salary and welfare, 50K/Year subsidy is provided for the first two years, with the possibility of continuing this subsidy plus a one-off 200K housing benefit if you are accepted to ZJUT public institution business unit.

C. Required documents
(1) One self-recommendation letter covering your study and professional records, your teaching and research statements, your achievements, your work plan as well as your possible requirements from us.
(2) A list of your research funds, awards, and publications in the recent five years.

D. Contact us
Dr. Qiu,
Email: qiuxiang@zjut.edu.cn
Mobile: +86-13867469319
Address: Xiaoheshan College Park, College of Information Engineering, Zhejiang University of Technology, 310023

6.27. Automation Engineer: Sunnyvale, CA, USA
Contributed by: Erik Timmermans, et@personifysearch.com

Automation Engineer, Controls
Location: Sunnyvale, CA

The Company: A world leader in automated molecular diagnostics.

Job Summary:
Work in conjunction with Automation Engineering team to design and develop automated assembly equipment for the high volume production of diagnostic disposables. Candidates should have hands on experience in design and development of PLC based control systems for use in factory automation.

Responsibilities:
- Configure, program, test and troubleshoot PLC based control systems and associated components.
- Configure, program, test and troubleshoot User Interface (UI) software for PLC based control systems.
- Configuration of data collection system and MES integration on RSBizware platform
- Electrical design, testing, and commissioning of control systems, control panels, and associated equipment.
- Documentation of PLC architecture and unit testing results.
- Management of bug tracking and feature requests.
- Support, update, and troubleshoot existing systems in production.
- Specify system components and suppliers.
- Participate in design reviews.
- Support for systems installation and commissioning.

Required Knowledge, Skills, and Abilities
- BS in Engineering or equivalent combination of education and experience to perform at this level
- Minimum 5 years direct experience
- PLC program design and development Allen-Bradley RSView, ControlLogix, factory talk transaction manager and associated components required
- Minimum 5 years direct experience
- Industrial automation industry experience preferred
- Medical manufacturing experience preferred
- Hands on experience with electrical troubleshooting in a high-volume automated manufacturing environment required