Welcome to the 349 issue of the Eletter, available electronically here.
To submit new articles, go “Article Submissions” on the Eletter website
To unsubscribe, please send an email with the subject line “Eletter Unsubscribe”.

The next Eletter will be mailed out at the beginning of October 2017.

Contents

1. IEEE CSS Headlines
 1.1 CFP: IEEE Control Systems Society Outreach Fund
 1.2 IEEE Control Systems Society Technically Cosponsored Conferences
 1.3 IEEE Transactions on Automatic Control
 1.4 IEEE Transactions on Control Systems Technology
 1.5 IEEE Control Systems Society Publications Content Digest

2. Summer School and Seminar
 2.1 Summer School on Formal Methods for Cyber-Physical Systems
 2.2 Oberwolfach Seminar “Mathematical Modeling in Systems Biology”

3. Books
 3.1 Process Control: Theory and Applications
 3.2 Optimal Control of Energy Resources for State Estimation Over Wireless Channels
 3.3 Fuzzy Control, Estimation and Diagnosis: Single and Interconnected Systems

4. Journals
 4.1 Contents: Automatica
 4.2 Contents: System & Control Letters
 4.3 Contents: Journal of Process Control
 4.4 Contents: Mechatronics
 4.5 Contents: International Journal of Control
 4.6 Contents: Evolution Equations and Control Theory
 4.7 Contents: Control Engineering Practice
 4.8 CFP: Asian Journal of Control
 4.9 CFP: IET Cyber-Physical Systems: Theory & Applications
 4.10 CFP: IEEE Transactions on Control Systems Technology
5. Conferences
5.1 ACM International Conference on Hybrid Systems: Computation and Control
5.2 World Congress: Mathematical Problems in Engineering, Aerospace and Sciences
5.3 International Conference on Unmanned Aircraft System
5.4 International Conference on Control, Automation and Systems
5.5 IFAC Symposium on Robust Control Design and IFAC Workshop on Linear Parameter Varying Systems

6. Positions
6.1 PhD: University of Massachusetts Lowell, USA
6.2 PhD: Slovak University of Technology in Bratislava, Slovakia
6.3 PhD: Université Laval, Canada
6.4 PhD: University of Sannio in Benevento, Italy
6.5 PhD: KU Leuven, Belgium
6.6 PhD/PostDoc: University of Kansas, USA
6.7 PhD/PostDoc: New York University Abu Dhabi, UAE
6.8 PhD/PostDoc: University of Melbourne, Australia
6.9 PostDoc: Northeastern University, USA
6.10 PostDoc: University of New Mexico, USA
6.11 PostDoc: The Ohio State University, USA
6.12 PostDoc: University of Michigan, USA
6.13 PostDoc: Shanghai Jiao Tong University, China
6.14 PostDoc: Singapore University of Technology and Design, Singapore
6.15 PostDoc: UIUC, USA
6.16 PostDoc: Gyeongsang National University, South Korea
6.17 PostDoc: University of Washington, USA
6.18 PostDoc: Israel Institute of Technology, Israel
6.19 PostDoc: University of Southern California, USA
6.20 PostDoc/Visiting Professor: Huazhong University of Science & Technology, China
6.21 Research Fellow: Hull University, UK
6.22 Faculty: Umeå University, Sweden
6.23 Faculty: University of Bath, UK
6.24 Faculty: Polytechnique Montreal, Canada
6.25 Faculty: Universidad Técnica Federico Santa María, Chile
6.26 Faculty: Naval Postgraduate School, USA
6.27 Research Scientist: Intelligent Fusion Technology Inc., USA
6.28 Research Scientist: Bosch Center for Artificial Intelligence, Germany
6.29 Senior Systems Engineer: NIO, USA
1. IEEE CSS Headlines

1.1. CFP: IEEE Control Systems Society Outreach Fund
Contributed by: Daniel E. Rivera, daniel.rivera@asu.edu

The IEEE CSS Outreach Task Force is pleased to announce that the window for proposal submission to the CSS Outreach Fund for its 2017 fall solicitation will be held from November 1 to 24, 2017. Information regarding the program, which includes proposal requirements and descriptions of current and past funded projects, can be found in:

http://www.ieeecss.org/general/control-systems-society-outreach-fund

Inquiries, notices of intent, and requests for application forms must be made directly to Daniel E. Rivera, Outreach Task Force Chair, at daniel.rivera@asu.edu.

1.2. IEEE Control Systems Society Technically Cosponsored Conferences
Contributed by: Luca Zaccarian, CSS AE Conferences, zaccarian@laas.fr

The following conferences have been recently included in the list of events technically cosponsored by the IEEE Control Systems Society:

For a full listing of CSS technically cosponsored conferences, please visit http://ieeecss.org/conferences/technically-cosponsored, and for a list of the upcoming and past CSS main conferences please visit http://ieeecss.org/conferences

1.3. IEEE Transactions on Automatic Control
Contributed by: Elizabeth Kovacs, ekovacs2@nd.edu

Table of Contents
IEEE Transactions on Automatic Control
Volume 62 (2017), Issue 9 (September)

Please note that the contents of the IEEE Transactions on Automatic Control, together with links to the abstracts of the papers may be found at the TAC web site: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9

- Scanning-the-Issue p. 4302

Papers
- Asynchronous Networked MPC with ISM for Uncertain Nonlinear Systems, G. P. Incremona, A. Ferrara, L. Magni p. 4305
- Optimality Conditions for Long-Run Average Rewards with Under Selectivity and Non-Smooth Features, X-R. Cao p. 4318
- Why RLC Realizations of Certain Impedances Need Many More Energy Storage Elements Than Expected, T. H. Hughes p. 4333
- Robust Output Regulation for Continuous-Time Periodic Systems, L. Paunonen p. 4363
- String Stability and a Delay-Based Spacing Policy for Vehicle Platoons Subject to Disturbances, B. Besselink, K. H. Johansson p. 4376
- Preserving Strong Connectivity in Directed Proximity Graphs, H. A. Poonawala, M. W. Spong p. 4392
- Asynchronous Multi-Agent Primal-Dual Optimization, M. T. Hale, A. Nedich, M. Egerstedt p. 4421
- Multivalued Robust Tracking Control of Lagrange Systems: Continuous and Discrete-Time Algorithms, F. A. Miranda-Villatoro, B. Brogliato, F. Castaños p. 4436
- Robust Tracking Commitment, A. Bitlislioglu, T. T. Gorecki, C. N. Jones p. 4451
- Data Dependent Convergence For Consensus Stochastic Optimization, A. Bijral, A. D. Sarwate, N. Srebro p. 4483
- Fast Moving Horizon State Estimation for Discrete-time Systems Using Single and Multi Iteration Descent Methods, A. Alessandri, M. Gaggero p. 4499
- Strong Stationarity Conditions for Optimal Control of Hybrid Systems, A. B. Hempel, P. J. Goulart, J. Lygeros p. 4512
- Dynamic Control of Agents playing Aggregative Games, S. Grammatico p. 4537

Technical Notes and Correspondence

- Foundations of a Bicoprime Factorization Theory, M. Tsiakkas, A. Lanzon p. 4598
- Optimal Sensor Data Scheduling for Remote Estimation over a Time-varying Channel, Y. Qi, P. Cheng, J. Chen p. 4611
- Dynamic Attack Detection in Cyber-Physical Systems with Side Initial State Information, Y. Chen, S. Kar, J. M. F. Moura p. 4618
- Stabilizing Quantum States and Automatic Error Correction by Dissipation Control, Y. Pan, T. Nguyen p. 4625
- Reverse and Forward Engineering of Frequency Control in Power Networks, L. Chen, S. You p. 4631
- An Auxiliary Particle Filtering Algorithm with Inequality Constraints, B. Li, C. Liu, W-H. Chen p. 4639
- Coordination Over Multi-Agent Networks with Unmeasurable States and Finite-Level Quantization, Y. Meng, T. Li, J-F. Zhang p. 4647
- Adaptive Consensus of Nonlinear Multi-Agent Systems with Non-identical Partially Unknown Control Directions and Bounded Modelling Errors, C. Chen, C. Wen, Z Liu, K. Xie, Y. Zhang, C. L. P. Chen p. 4654
- MAS Consensus and Delay Limits under Delayed Output Feedback, T. Qi, L. Qiu, J. Chen p. 4660
- Realization Theory for LPV State-Space Representations with Affine Dependence, M. Petreczky, R. TÜth, G. Mercère p. 4667
- Robust Transport Over Networks, Y. Chen, T. T. Georgiou, M. Pavon, A. Tannenbaum p. 4675
- Distributed Adaptive Consensus Output Regulation of Network-Connected Heterogeneous Unknown Linear Systems on Directed Graphs, Z. Ding p. 4683
- Necessary Stability Conditions for Neutral Type Systems with a Single Delay, M. A. Gomez, A. V. Egorov, S. Mondiè p. 4691
- Predictive Networked Control of Discrete Event Systems, S. Shu, F. Lin p. 4698
- A General Dynamic Scaling Based Control Redesign to Handle Input Unmodeled Dynamics in Uncertain Nonlinear Systems, P. Krishnamurthy, F. Khorrani p. 4719
- Stabilization of Uncertain Discrete-time Linear System with Limited Communication, N. S. Tripathy, I. N. Kar, K. Paul p. 4727
- Non-Intrusive Reference Governors for Over-Actuated Linear Systems, J. Zhou, M. Canova, A. Serrani p. 4734
- Global Chartwise Feedback Linearization of the Quadcopter with a Thrust Positivity Preserving Dynamic Extension, D. E. Chang, Y. Eun p. 4747
- Event-Triggered State Estimation with an Energy Harvesting Sensor, J. Huang, D. Shi, T. Chen p. 4768
- Low-gain Integral Control for Multi-Input, Multi-Output Linear Systems with Input Nonlinearities, C. Guiver, H. Logemann, S. Townley p. 4776
- Local Condition-Based Consensus Filtering with Stochastic Nonlinearities and Multiple Missing Measurements, G. Wei, F. Han, D. Ding, Y. Song p. 4784
- Stability Analysis of Impulsive Stochastic Nonlinear Systems, W. Ren, J. Xiong p. 4791
- Parameter and Controller Dependent Lyapunov Functions for Robust D-Stability and Robust Performance Controller Design, G. Chesi p. 4798
- Inverse Feedback Shapers for Coupled Multibody Systems, M. Hromcik, T. Vyhlidal p. 4804
- Distributed Nash Equilibrium Seeking by A Consensus Based Approach, M. Ye, G. Hu p. 4811
- On Minimizing the Maximal Characteristic Frequency of a Linear Chain, Y. Zarai, M. Margaliot p. 4827
- Distributed Fault Detection Isolation and Accommodation for Homogeneous Networked Discrete-Time Linear Systems, A. Marino, F. Pierri, F. Arrichiello p. 4840
- Joint State Estimation and Delay Identification for Nonlinear Systems with Delayed Measurements, F. Cacace, F. Conte, A. Germani, G. Palombo p. 4848
- The Effect of Uncertainty on Production-Inventory Policies with Environmental Considerations, K. Kogan, B. Venturi, M. Shnaiderman p. 4862
- SVD-based Kalman Filter Derivative Computation, J. V. Tsyganova, M. V. Kulikova p. 4869
- Verifiable Conditions for Multi-output Observer Error Linearizability, H-G. Lee p. 4876
- Effect of Adding Edges to Consensus Networks with Directed Acyclic Graphs, H-T. Zhang, Z. Chen, X. Mo p. 4891

1.4. IEEE Transactions on Control Systems Technology
Contributed by: TCST Editorial Board, ieeetcst@osu.edu

Table of Contents
IEEE Transactions on Control Systems Technology
Volume 25 (2017), Issue 5 (September)

Regular papers
- Demand Response of a TCL Population Using Switching-Rate Actuation, L. C. Totu, R. Wisniewski, and J. Leth, page 1537
- Cooperative Optical Trapping and Manipulation of Multiple Cells With Robot Tweezers, X. Li, C. C. Cheah, and Q. M. Ta, page 1564
- Demand Response Load Following of Source and Load Systems, J. Hu, J. Cao, T. Yong, J. M. Guerrero, M. Z. Q. Chen, and Y. Li, page 1586
- Output Feedback Control of Multirate Sampled-Data Systems With Frequency Specifications, H. Gao, S. Xue, S. Yin, J. Qiu, and C. Wang, page 1599
- Network-Based Heading Control and Rudder Oscillation Reduction for Unmanned Surface Vehicles, Y.-L. Wang and Q.-L. Han, page 1609
- Control of Thermal Power Plant Combustion Distribution Using Extremum Seeking, A. Marjanovic, M. Krstic, Ž. Dušovic, and B. Kovacević, page 1670
- Inferring Intent for Novice Human-in-the-Loop Iterative Learning Control, R. B. Warrier and S. Devasia, page 1698
- Safety-Enhanced Motion Planning for Flexible Surgical Manipulator Using Neural Dynamics, Y. Chen, W. Xu, Z. Li, S. Song, C. M. Lim, Y. Wang, and H. Ren, page 1711
- Accurate FRF Identification of LPV Systems: nD-LPM With Application to a Medical X-Ray System, R. van der Maas, A. van der Maas, R. Voorhoeve, and T. Oomen, page 1724
- Gust Load Alleviation: Identification, Control, and Wind Tunnel Testing of a 2-D Aeroelastic Airfoil, C. Poussot-Vassal, F. Demourant, A. Lepage, and D. Le Bihan, page 1736
- Data-Driven Nonlinear Subspace Modeling for Prediction and Control of Molten Iron Quality Indices in Blast Furnace Ironmaking, P. Zhou, H. Song, H. Wang, and T. Chai, page 1761

Brief papers
- Adaptive Minimum-Energy Tracking Control for the Mechatronic Elevator System, K.-Y. Chen, M.-S. Huang, and R.-F. Fung, page 1790
- Limited-Communication Distributed Model Predictive Control for Coupled and Constrained Subsystems, R. E. Jalal and B. P. Rasmussen, page 1807
- Data-Driven Nonlinear Identification of Li-Ion Battery Based on a Frequency Domain Nonparametric Analysis, R. Relan, Y. Firouz, J.-M. Timmermans, and J. Schoukens, page 1825
- Nonlinear Suboptimal Tracking Controller Design Using State-Dependent Riccati Equation Technique, Y. Batmani, M. Davoodi, and N. Meskin, page 1833
- Bilinear Approximate Model-Based Robust Lyapunov Control for Parabolic Distributed Collectors, S. Elmetennani and T. M. Laleg-Kirati, page 1848
- Torque Observer-Based Control of Self-Energizing Clutch Actuator for Dual Clutch Transmission, J. J. Oh, J. S. Eo, and S. B. Choi, page 1856
- Detection and Diagnosis of Multiple Faults With Uncertain Modeling Parameters, S. Zhao, B. Huang, and F. Liu, page 1873
- An Extended Differential Flatness Approach for the Health-Conscious Nonlinear Model Predictive Control of Lithium-Ion Batteries, J. Liu, G. Li, and H. K. Fathy, page 1882
- Bias Voltage Control in Pulsed Applications for Mach–Zehnder Electrooptic Intensity Modulators, L. R. Hofer, D. B. Schaeffer, C. G. Constantin, and C. Niemann, page 1890
- A Compensator for Large Antennas Based on Pointing Error Estimation Under a Wind Load, J. Zhang, J. Huang, J. Zhou, C. Wang, and Y. Zhu, page 1912

1.5. IEEE Control Systems Society Publications Content Digest
Contributed by: Elizabeth Kovacs, ekovacs2@nd.edu

The IEEE Control Systems Society Publications Content Digest is a novel and convenient guide that helps readers keep track of the latest published articles.

The CSS Publications Content Digest, available at
http://ieeecss.org/publications-content-digest
provides lists of current tables of contents of the periodicals sponsored by the Control Systems Society. Each issue offers readers a rapid means to survey and access the latest peer-reviewed papers of the IEEE Control Systems Society. We also include links to the Society’s sponsored Conferences to give readers a preview of upcoming meetings.

2. Summer School and Seminar

2.1. Summer School on Formal Methods for Cyber-Physical Systems
Contributed by: Matthias Rungger, matthias.rungger@tum.de

CALL FOR PARTICIPATION
1st Summer School on Formal Methods for Cyber-Physical Systems
Edition 2017: Automatic Synthesis of Controllers for Hybrid Systems
12-16 September 2017
Department of Computer Science
University of Verona, Italy

The 1st Summer School on Formal Methods for Cyber-Physical Systems (FM-CPS) is a new summer school to be held at University of Verona from September 12th to 16th. The 2017 edition of FM-CPS 2017 focuses on the foundations, techniques, and tools for analysis, verification, control, synthesis, implementation, and applications of cyber-physical systems (CPS). Applications deal broadly with engineering and natural systems, including signal circuits, robotics, automotive and avionics, large-scale infrastructure networks, as well as biochemical and physiological processes.

Details https://cps-2017.di.univr.it/school-editions/2017

2.2. Oberwolfach Seminar “Mathematical Modeling in Systems Biology”
Contributed by: Steffen Waldherr, steffen.waldherr@kuleuven.be

Oberwolfach Seminar "Mathematical Modeling in Systems Biology“, organized by Susanna Röblitz (Zuse Institute Berlin), Heike Siebert (Free University Berlin), Jan Hasenauer (Helmholtz Center Munich) and Steffen Waldherr (KU Leuven), takes place on 19th - 25th November 2017 at the Oberwolfach Research Institute for Mathematics. It is aimed at PhD students and PostDocs interested in the mathematical underpinnings of modeling molecular networks, providing background on the underlying theory and discussing its application. The format is a mixture of lectures and exercises, leaving also enough room to in-depth discussion, as is tradition for Oberwolfach activities.

Preliminary Program
Day 1: Discrete modeling
Day 2: Constraint-based modeling
Day 3: Continuous and stochastic modeling I
Day 4: Continuous and stochastic modeling II
Day 5: Modeling across the formalism scale

The program also includes a poster session and an excursion.

See also:
www.mfo.de/occasion/1747a/www_view
http://userwikis.fu-berlin.de/display/biomath/Mathematical+Modeling+in+Systems+Biology

3. Books

3.1. Process Control: Theory and Applications
Contributed by: Yasmin Brookes, yasmin.brookes@springer.com

Process Control: Theory and Applications
by Jean-Pierre Corriou
ISBN: 978-3-319-61142-6
September 2017, Springer
Hardcover, 860 pages, $129.00/EURO 109,00
This textbook introduces the topics and theories of process control step-by-step in increasing complexity, making the learning of detailed techniques and algorithms easier. Whether you are a student starting in control, or an industrial engineer who, at present, only has cursory contact with control, the initial classical approach to continuous control by transfer functions will be of enormous benefit. The more advanced material on discrete control and state-space control, as well as nonlinear control and observers, requires minimal previous knowledge, assisting you to move more easily to the use of high-performance techniques.

A range of identification and control methods applicable to industrial processes are accompanied by practical examples, allowing readers to learn the subject both broadly and in depth. The expanded second edition of Process Control explores and introduces detailed topics, such as:

- new sections on tuning rules for feedback controllers;
- new sequences for parameter identification such as multi-level and multisinusoidal sequences;
- improved presentation of optimal control with dynamic optimization and model predictive control;
- deeper coverage of applications of nonlinear geometric control;
- expanded coverage of state observers, introducing the unscented and ensemble Kalman filters, the particle filter, the bootstrap filter, and providing more profound treatment of the Luenberger observer and high-gain observer; and
- more examples of process control.

The book helps students to learn by using worked examples throughout the text, along with a downloadable solutions manual for the convenience of instructors. The broad coverage creates an important synthesis of the majority of aspects of process control, which gives a complete view of control theory and possible applications within the field, making the book accessible to engineers and academic researchers alike.

Contents

Part I Continuous-Time Control
1 Dynamic Modelling of Chemical Processes
2 Linear Feedback Control
3 Stability Analysis
4 Design of Feedback Controllers
5 Frequency Analysis
6 Improvement of Control Systems
7 State Representation, Controllability and Observability

Part II Multivariable Control
8 Multivariable Control by Transfer Function Matrix

Part III Discrete-Time Identification
9 Discrete-Time Generalities and Basic Signal Processing
10 Identification Principles
11 Models and Methods for Parametric Identification
12 Parametric Estimation Algorithms
13 Digital Control
14 Optimal Control
15 Generalized Predictive Control
16 Model Predictive Control

Part V Nonlinear Control
17 Nonlinear Geometric Control
3.2. Optimal Control of Energy Resources for State Estimation Over Wireless Channels

Contributed by: Yasmin Brookes, yasmin.brookes@springer.com

Optimal Control of Energy Resources for State Estimation Over Wireless Channels
by Alex S. Leong, Daniel E. Quevedo, and Subhrakanti Dey.
ISBN: 978-3-319-65613-7
September 2017, Springer
Softcover, 125 pages, $54.99/EURO 49.99

This brief introduces wireless communications ideas and techniques into the study of networked control systems. It focuses on state estimation problems in which sensor measurements (or related quantities) are transmitted over wireless links to a central observer.

Wireless communications techniques are used for energy resource management in order to improve the performance of the estimator when transmission occurs over packet dropping links, taking energy use into account explicitly in Kalman filtering and control. The brief allows a reduction in the conservatism of control designs by taking advantage of the assumed.

The brief shows how energy-harvesting-based rechargeable batteries or storage devices can offer significant advantages in the deployment of large-scale wireless sensor and actuator networks by avoiding the cost-prohibitive task of battery replacement and allowing self-sustaining sensor to be operation. In contrast with research on energy harvesting largely focused on resource allocation for wireless communication systems design, this brief optimizes estimation objectives such as minimizing the expected estimation error covariance. The resulting power control problems are often stochastic control problems which take into account both system and channel dynamics. The authors show how to pose and solve such design problems using dynamic programming techniques.

Researchers and graduate students studying networked control systems will find this brief a helpful source of new ideas and research approaches.

Contents

1 Introduction
2 Optimal Power Allocation for Kalman Filtering over Fading Channels
2.1 Optimal Power Allocation for Remote State Estimation
2.2 Optimal Power Allocation with Energy Harvesting
2.3 Conclusion
3 Optimal Transmission Scheduling for Event-Triggered Estimation with Packet Drops
3.1 Transmission Scheduling over a Packet Dropping Channel
3.2 Transmission Scheduling with Energy Harvesting
3.3 Conclusion
4 Optimal Transmission Strategies for Remote State Estimation
4.1 System Model
4.2 Analysis of the System Model
4.3 Optimal Transmission Policy Problem
4.4 Structural Results on Optimal Transmission Policies for Scalar Systems
4.5 Numerical Studies
4.6 Conclusion
5 Remote State Estimation in Multi-hop Networks
5.1 Kalman Filtering over Fading Channels with Relays
5.2 Network Topology Reconfiguration for Remote State Estimation
6 Concluding Remarks

3.3. Fuzzy Control, Estimation and Diagnosis: Single and Interconnected Systems
Contributed by: Yasmin Brookes, yasmin.brookes@springer.com

Fuzzy Control, Estimation and Diagnosis: Single and Interconnected Systems
by Magdi S. Mahmoud
August 2017, Springer
Hardcover, 689 pages, $119.00/EURO 99.99

This textbook explains the principles of fuzzy systems in some depth together with information useful in realizing them within computational processes. The various algorithms and example problem solutions are a well-balanced and pertinent aid for research projects, laboratory work and graduate study. In addition to its worked examples, the book also uses end-of-chapter exercises as an instructional aid with a downloadable solutions manual available to instructors. The content of the book is developed and extended from material taught for four years in the author’s classes.

The text provides a broad overview of fuzzy control, estimation and fault diagnosis. It ranges over various classes of target system and modes of control and then turns to filtering, stabilization, and fault detection and diagnosis. Applications, simulation tools and an appendix on algebraic inequalities complete a unified approach to the analysis of single and interconnected fuzzy systems.

Fuzzy Control, Estimation and Fault Detection is a guide for final-year undergraduate and graduate students of electrical and mechanical engineering, computer science and information technology, and will also be instructive for professionals in the information technology sector.

Contents
1 Introduction
Part I Applications and Tools
2 Basics of Fuzzy Control
3 Discrete–Time Fuzzy Delay Systems
4 Fuzzy Networked Control Systems
5 Adaptive and Sliding-Mode Fuzzy Control
6 Robust Fuzzy Control
Part II Fuzzy Estimation
7 Fuzzy Robust Estimation
8 Fuzzy Stabilization Approaches
Part III Fuzzy Diagnosis
4. Journals

4.1. Contents: Automatica
Contributed by: Elisa Capello, elisa.capello@polito.it

Table of Contents
Automatica
Vol. 83, September 2017

- Corrado Possieri, Andrew R. Teel, Asymptotic stability in probability for Stochastic Boolean Networks, Pages 1-9
- Eric S. Kim, Murat Arcak, Sanjit A. Seshia, Symbolic control design for monotone systems with directed specifications, Pages 10-19
- Samira S. Farahani, Ton van den Boom, Bart De Schutter, On optimization of stochastic max–min-plus-scaling systems—An approximation approach, Pages 20-27
- Wu-Hua Chen, Wei Xing Zheng, Xiaomei Lu, Impulsive stabilization of a class of singular systems with time-delays, Pages 28-36
- Ji Liu, A. Stephen Morse, Angelia Nedić, Tamer Başar, Exponential convergence of a distributed algorithm for solving linear algebraic equations, Pages 37-46
- Oswaldo Luiz do Valle Costa, Danilo Zucolli Figueiredo, Filtering -coupled algebraic Riccati equations for discrete-time Markov jump systems, Pages 47-57
- Mei Liu, Junlin Xiong, Properties and stability analysis of discrete-time negative imaginary systems, Pages 58-64
- Yusheng Wei, Zongli Lin, Maximum delay bounds of linear systems under delay independent truncated predictor feedback, Pages 65-72
- Alberto Cavallo, Giacomo Canciello, Beniamino Guida, Supervised control of buck-boost converters for aeronautical applications, Pages 73-80
- Ambrose Adebayo Adegbege, William Paul Heath, A framework for multivariable algebraic loops in linear anti-windup implementations, Pages 81-90
- Hisakazu Nakamura, Yasuyuki Satoh, Étale backstepping for control Lyapunov function design on manifold, Pages 100-107
- Robert A.E. Zidek, Ilya V. Kolmanovsky, Drift counteraction optimal control for deterministic systems and enhancing convergence of value iteration, Pages 108-115
- Weiguo Xia, Ziyang Meng, Guodong Shi, Karl Henrik Johansson, Optimal tradeoff between instantaneous and delayed neighbor information in consensus algorithms, Pages 116-123
- Ci Chen, Changyun Wen, Zhi Liu, Kan Xie, Yun Zhang, C.L. Philip Chen, Adaptive asymptotic control
of multivariable systems based on a one-parameter estimation approach, Pages 124-132
- Mattia Zorzi, On the robustness of the Bayes and Wiener estimators under model uncertainty, Pages 133-140
- Mario Di Ferdinando, Pierdomenico Pepe, Robustification of sample-and-hold stabilizers for control-affine time-delay systems, Pages 141-154
- Sheng-Li Du, Xi-Ming Sun, Ming Cao, Wei Wang, Pursuing an evader through cooperative relaying in multi-agent surveillance networks, Pages 155-161
- Shuai Liu, Zhirong Qiu, Lihua Xie, Convergence rate analysis of distributed optimization with projected subgradient algorithm, Pages 162-169
- Xiaodong Xu, Stevan Dubljevic, Output and error feedback regulator designs for linear infinite-dimensional systems, Pages 170-178
- Hamed Samie, Emmanuel Moulay, Patrick Coirault, Rodolphe Vauzelle, Power control in Wireless Cellular Networks with a time-varying delay, Pages 179-185
- Guofeng Zhang, Dynamical analysis of quantum linear systems driven by multi-channel multi-photon states, Pages 186-198
- Xiang Yin, Stéphane Lafortune, Verification complexity of a class of observational properties for modular discrete events systems, Pages 199-205
- Shu-Xia Tang, Leobardo Camacho-Solorio, Yebin Wang, Miroslav Krstic, State-of-Charge estimation from a thermal–electrochemical model of lithium-ion batteries, Pages 206-219
- Feng Lin, Le Yi Wang, Wen Chen, Leitao Han, Bin Shen, -diagnosability for active on-line diagnosis in discrete event systems, Pages 220-225
- Jieqiang Wei, Anneroos R.F. Everts, M. Kanat Camlibel, Arjan J. van der Schaft, Consensus dynamics with arbitrary sign-preserving nonlinearities, Pages 226-233
- Ebrahim Moradi Shahrivar, Mohammad Pirani, Shreyas Sundaram, Spectral and structural properties of random interdependent networks, Pages 234-242
- Yongduan Song, Yujuan Wang, John Holloway, Miroslav Krstic, Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time, Pages 243-251
- Wen Kang, Emilia Fridman, Boundary control of delayed ODE–heat cascade under actuator saturation, Pages 252-261
- Antoine Chaillot, Georgios Is. Detorakis, Stéphane Palfi, Suhun Senova, Robust stabilization of delayed neural fields with partial measurement and actuation, Pages 262-274
- Grzegorz Mzyk, Pawel Wachel, Kernel-based identification of Wiener–Hammerstein system, Pages 275-281
- Simon Wollnack, Hossam Seddik Abbas, Roland Tóth, Herbert Werner, Fixed-structure LPV-IO controllers: An implicit representation based approach, Pages 282-289
- Timm Strecker, Ole Morten Aamo, Output feedback boundary control of semilinear hyperbolic systems, Pages 290-302
- Haitao Li, Yuzhen Wang, Further results on feedback stabilization control design of Boolean control networks, Pages 303-308
- Gregor Goebel, Frank Allgöwer, Semi-explicit MPC based on subspace clustering, Pages 309-316
- Hong Son Hoang, Remy Baraille, On the efficient low cost procedure for estimation of high-dimensional prediction error covariance matrices, Pages 317-330
- Abolfazl Yaghmaei, Mohammad Javad Yazdanpanah, Trajectory tracking for a class of contractive port Hamiltonian systems, Pages 331-336
- Le Ha Vy Nguyen, Catherine Bonnet, Stabilization of MISO fractional systems with delays, Pages 337-344
- Alessio Merola, Carlo Cosentino, Domenico Colacino, Francesco Amato, Optimal control of uncertain non-
linear quadratic systems, Pages 345-350
- Wenjie Li, Francesca Bassi, Laura Galluccio, Michel Kieffer, Peer-Assisted Individual Assessment in a multi-agent system, Pages 351-360
- Jiangshuai Huang, Yong-Duan Song, Wei Wang, Changyun Wen, Guoqi Li, Smooth control design for adaptive leader-following consensus control of a class of high-order nonlinear systems with time-varying reference, Pages 361-367
- Bin Zhou, Qingsong Liu, Frédéric Mazenc, Stabilization of linear systems with both input and state delays by observer–predictors, Pages 368-377
- Jinhiao Lin, Shiji Song, Keyou You, Miroslav Krstic, Stochastic source seeking with forward and angular velocity regulation, Pages 378-386
- Hui Tian, Huaguang Zhang, Zhanshan Wang, Yanfang Hou, Stabilization of -valued logical control networks by open-loop control via the reverse-transfer method, Pages 387-390
- Hamed Rezaee, Farzaneh Abdollahi, Comment on “Attitude synchronization control for a group of flexible spacecraft” [Automatica 50 (2014) 646–651], Page 396
- Haibo Du, Shihua Li, Authors’ reply to “Comment on ‘Attitude synchronization control for a group of flexible spacecraft’” [Automatica 50 (2014) 646–651], Page 397
- Bao-Zhu Guo, Ze-Hao Wu, Hua-Cheng Zhou, Comments on “Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control”, Pages 398
- Maopeng Ran, Qing Wang, Chaoyang Dong, Reply to “Comments on ‘Stabilization of a class of nonlinear systems with actuator saturation via active disturbance rejection control’ [Automatica 63 (2016) 302–310]”, Page 399

4.2. Contents: System & Control Letters
Contributed by: John Coca, j.coca@elsevier.com

System & Control Letters
Vol. 106
August 2017
- Christian Clason, Armin Rund, Karl Kunisch, Nonconvex penalization of switching control of partial differential equations, Pages 1-8
- Beata Sikora, Jerzy Klamka, Constrained controllability of fractional linear systems with delays in control, Pages 9-15
- Atreyee Kundu, Debasis Chatterjee, Stabilizing switching signals: A transition from point-wise to asymptotic conditions, Pages 16-23
- Cong Wu, Xinzhi Liu, External stability of switching control systems, Pages 24-31
- Daniel Silvestre, Paulo Rosa, João P. Hespanha, Carlos Silvestre, Fault detection for LPV systems using Set-Valued Observers: A coprime factorization approach, Pages 32-39
- Jamila Kalantarova, Türker Özsarı, Finite-parameter feedback control for stabilizing the complex Ginzburg–Landau equation, Pages 40-46
- Ya-Jun Pan, Herbert Werner, Zipeng Huang, Marcus Bartels, Distributed cooperative control of leader–follower multi-agent systems under packet dropouts for quadcopters, Pages 47-57
- Lorenzo Ntogramatzidis, Fabrizio Padula, A general approach to the eigenstructure assignment for reachability and stabilizability subspaces, Pages 58-67

Back to the contents
- Douglas A. Allan, Cuyler N. Bates, Michael J. Risbeck, James B. Rawlings, On the inherent robustness of optimal and suboptimal nonlinear MPC, Pages 68-78
- Boris Houska, Matthias A. Müller, Cost-to-travel functions: A new perspective on optimal and model predictive control, Pages 79-86
- Guoquan Huang, Towards consistent filtering for discrete-time partially-observable nonlinear systems, Pages 87-95

4.3. Contents: Journal of Process Control
Contributed by: John Coca, j.coca@elsevier.com

Journal of Process Control
Volume 57
September 2017
- Lars Norbert Petersen, Niels Kjølstad Poulsen, Hans Henrik Niemann, Christer Utzen, John Bagterp Jørgensen, Comparison of three control strategies for optimization of spray dryer operation, Pages 1-14
- Xiaofeng Yuan, Yalin Wang, Chunhua Yang, Weihua Gui, Lingjian Ye, Probabilistic density-based regression model for soft sensing of nonlinear industrial processes, Pages 15-25
- J.L. Godoy, A. Ferramosca, A.H. González, Economic performance assessment and monitoring in LP-DMC type controller applications, Pages 26-37
- Anirudh Nandan, Syed Imtiaz, Stephen Butt, Robust gain switching control of constant bottomhole pressure drilling, Pages 38-49
- Lars Norbert Petersen, Niels Kjølstad Poulsen, Hans Henrik Niemann, Christer Utzen, John Bagterp Jørgensen, An experimentally validated simulation model for a four-stage spray dryer, Pages 50-65
- Dan Ling, Ying Zheng, Hong Zhang, Weidong Yang, Bo Tao, Detection of model-plant mismatch in closed-loop control system, Pages 66-79
- Zhiyong Zeng, Wen Tan, Rong Zhou, Performance assessment for generalized delay-timers in alarm configuration, Pages 80-101
- Devin W. Griffith, Victor M. Zavala, Lorenz T. Biegler, Robustly stable economic NMPC for non-dissipative stage costs, Pages 116-126
- Jingjing Du, Tor Arne Johansen, Control-relevant nonlinearity measure and integrated multi-model control, Pages 127-139
- Youngseung Na, Federico Zenith, Ulrike Krewer, Highly integrated direct methanol fuel cell systems minimizing fuel loss with dynamic concentration control for portable applications, Pages 140-147
- Rahul Raveendran, Biao Huang, Two layered mixture Bayesian probabilistic PCA for dynamic process monitoring, Pages 148-163

4.4. Contents: Mechatronics
Contributed by: John Coca, j.coca@elsevier.com

Mechatronics
Vol. 45
August 2017
4.5. Contents: International Journal of Control
Contributed by: Bing Chu, b.chu@soton.ac.uk

International Journal of Control
Volume 90, Issue 9, 2017
http://www.tandfonline.com/toc/tcon20/current

- Finite-time consensus for multi-agent systems with globally bounded convergence time under directed communication graphs, Junjie Fu & Jin-zhi Wang, pages: 1807-1817
- Semi-global robust output regulation for a class of singular nonlinear systems via nonlinear internal model Bomin Huang & Weiyao Lan, pages: 1818-1829
- A centre-free approach for resource allocation with lower bounds, Germán Obando, Nicanor Quijano & Naly Rakoto-Ravalontsalama, pages: 1830-1845
- A necessary and sufficient condition for input-to-state stability of quantised feedback systems, J. Wang, pages: 1846-1860
- Differential games, finite-time partial-state stabilisation of nonlinear dynamical systems, and optimal robust control, Andrea L’Afflitto, pages: 1861-1878
- Time-varying state-feedback stabilisation of stochastic feedforward nonlinear systems with unknown growth rate, Ticao Jiao, Wei Xing Zheng & Shengyuan Xu, pages: 1879-1892
- Local uncontrollability for affine control systems with jumps, Savin Treanţă, pages: 1893-1902
- Noise covariance identification for time-varying and nonlinear systems, Ming Ge & Eric C. Kerrigan, pages: 1903-1915
- Global stabilisation for a class of switched high-order stochastic nonlinear systems, Ben Niu & Liang Liu, pages: 1916-1924
- Distributed adaptive tracking control for high-order multi-agent systems with unknown dynamics, Jianzhong Gu, Wuquan Li & Hongyong Yang, pages: 1925-1934
- A new kind of nonlinear disturbance observer for nonlinear systems with applications to cruise control of air-breathing hypersonic vehicles, Zhiling Yang, Bin Meng & Hongfei Sun, pages: 1935-1950
- Robust backstepping control of an interlink converter in a hybrid AC/DC microgrid based on feedback linearisation method, N. Mahdian Dehkordi, N. Sadati & M. Hamzeh, pages: 1990-2004
- Containment control of a class of heterogeneous nonlinear multi-agent systems, Zhenxing Li & Haibo Ji, pages: 2020-2030
- Frequency-limited H_{∞}-controller order reduction for linear parameter-varying systems, Hossni Zebiri, Benjamin Mourlion & Michel Basset, pages: 2031-2046
- Perturbed nonlinear systems control using extended robust right coprime factorisation, Fazhan Tao & Mingcong Deng, pages: 2047-2056

4.6. Contents: Evolution Equations and Control Theory
Contributed by: Irena Lasiecka, lasiecka@memphis.edu

Content of Evolution Equations and Control Theory (EECT),
Vol 6, No 3, September, 2017
http://aimsciences.org/journals/contentsListnew.jsp?pubID=974C

1. T. Anh and V.M. Toi, LOCAL EXACT CONTROLLABILITY TO TRAJECTORIES OF THE MAGNETO-MICROPOLAR FLUID EQUATIONS
2. Ugur G. Abdulla and Evan Cosgrove and Jonathan Goldfarb, ON THE FRECHET DIFFERENTIABILITY IN OPTIMAL CONTROL OF COEFFICIENTS IN PARABOLIC FREE BOUNDARY PROBLEMS
4. L. Maniar and M. Meyries and R. Schnaubelt, NULL CONTROLLABILITY FOR PARABOLIC EQUATIONS WITH DYNAMIC BOUNDARY CONDITIONS
5. M. Koran and S. Sritharan, Lp SOLUTIONS OF THE STOCHASTIC NAVIER-STOKES EQUATIONS SUBJECT TO LEVY NOISE WITH $L^m(R^m)$ INITIAL DATA
6. Z. Peng and Z Wan and W. Xiong, SENSITIVITY ANALYSIS IN SET-VALUED OPTIMIZATION UNDER STRICTLY MINIMAL EFFICIENCY
7. M.A. Jorge Silva and V. Narciso, LONG-TIME DYNAMICS FOR A CLASS OF EXTENSIBLE BEAMS WITH NONLOCAL NONLINEAR DAMPING
8. JinRong Wan and M. Feckan, APPROXIMATE CONTROLLABILITY OF SOBOLEV TYPE FRACTIONAL EVOLUTION SYSTEMS WITH NONLOCAL CONDITIONS

4.7. Contents: Control Engineering Practice
Contributed by: Martin Böck, cep@acin.tuwien.ac.at

Control Engineering Practice
Volume 66
September 2017

- M. Richter, S. Schaut, D. Walser, K. Schneider, O. Sawodny, Experimental validation of an active heave compensation system: Estimation, prediction and control, Pages 1-12
- Zuo Wang, Shihua Li, Junxiao Wang, Qi Li, Robust control for disturbed buck converters based on two GPI observers, Pages 13-22
- G. Hulko, C. Belavy, K. Ondrejko, L. Bartalsky, M. Bartko, Control of technological and production processes as distributed parameter systems based on advanced numerical modeling, Pages 23-38
- Siqi Qiu, Mohamed Sallak, Walter Schön, Zohra Cherfi-Boulanger, Application of Valuation-Based Systems for the availability assessment of systems under uncertainty, Pages 39-50
- Xin Zhou, Jeffrey L. Stein, Tulga Ersal, Battery state of health monitoring by estimation of the number of cyclable Li-ions, Pages 51-63
- Azzeddine Bakdi, Abdelmalek Kouadri, Abderazak Bensmail, Fault detection and diagnosis in a cement rotary kiln using PCA with EWMA-based adaptive threshold monitoring scheme, Pages 64-75
- Rafael S. Castro, Aurélio T. Salton, Jeferson V. Flores, Michel Kinnaert, Daniel F. Coutinho, Variable frequency resonant controller for load reduction in wind turbines, Pages 76-88
- Azamat Tastemirov, Andrea Lecchini-Visintini, Rafael M. Morales-Viviescas, Complete dynamic model of the Twin Rotor MIMO System (TRMS) with experimental validation, Pages 89-98
- R. Keller, S.X. Ding, M. Müller, D. Stolten, Fault-tolerant model predictive control of a direct methanol-fuel cell system with actuator faults, Pages 99-115
- C.M. Verrelli, P. Tomei, E. Lorenzani, R. Fornari, F. Immovilli, Further results on nonlinear tracking control and parameter estimation for induction motors, Pages 116-125
- D. Ali, S. Mukhopadhyay, H. Rehman, A. Khurram, UAS based Li-ion battery model parameters estimation, Pages 126-145
- Nabanita Adhikary, Chitralekha Mahanta, Inverse dynamics based robust control method for position commanded servo actuators in robot manipulators, Pages 146-155
- Jun Shang, Maoyin Chen, Hongquan Ji, Donghua Zhou, Haifeng Zhang, Mingliang Li, Dominant trend based logistic regression for fault diagnosis in nonstationary processes, Pages 156-168
- Pierre Besset, Richard Béarée, FIR filter-based online jerk-constrained trajectory generation, Pages 169-180
- Mariusz Buciakowski, Marcin Witczak, Marcin Mrugalski, Didier Theilliol, A quadratic boundedness approach to robust DC motor fault estimation, Pages 181-194

4.8. CFP: Asian Journal of Control
Contributed by: Lichen Fu, lichen@ntu.edu.tw

Asian Journal of Control
CALL FOR PAPER
Renewable energy resources pose a number of fundamental and practical challenges such as cost and availability that need to be addressed before significant levels of renewable penetration into the existing power-mix can be realized. The intermittency of the renewable energy sources results in systems of exhibited changing dynamics, nonlinearities, and uncertainties. In addition, the behavior of these energy conversion systems is dominated by strong nonlinearities and the heavy interaction of continuous and discrete dynamics. This makes the application of classical control techniques, based on linearized models and purely continuous (or discrete) models inadequate. The use of more efficient control and optimization strategies would not only enhance the performance of these systems, but would also reduce the cost per kilowatt-hour produced. Therefore, the control applications of renewable energy systems are of great attractions to researchers. This special issue of the Asian Journal of Control (AJC) will provide a forum for researchers and practitioners to share insights on innovation and development of control methods for renewable energy systems, the application of advanced control techniques and methods to enable more efficient and higher operational capabilities of systems in the general area of renewable energy and Hybrid Power Systems (HPS).

Authors are invited to submit full papers describing original work in all aspects of engineering techniques related to the nonlinear control and stability analysis of the renewable energy-based systems covering the following topics but are not limited to:

- Nonlinear control of batteries or fuel cells.
- Battery and/or fuel cells integration into HPS.
- HPS in transportation applications.
- Optimal sizing of HPS.
- Linear/nonlinear control of HPS.
- HVDC use in HPSs.
- Power electronics and drives in HPS.
- Intelligent energy and smart grids.
- Green buildings.
- ICT applications in HPS.
- Energy storage systems impacts on HPS.
- Renewable-based off-Grid/Grid-Interactive systems.

Important Dates:
December 31, 2017 Deadline for submissions
March 31, 2018 Completion of First Review
July 31, 2018 Completion of Final Review
August 31, 2018 Receipt of Final Manuscript
Nov 30, 2018 Publication (Tentatively Vol. 20, No. 6)

Guest Editors:
Prof. Jian CHEN
College of Control Science and Engineering, Zhejiang University, Hangzhou, China
jchen@zju.edu.cn

Dr. Mohamed BECHERIF
FCLab, Univ. Bourgogne Franche-Comte/UTBM, France.
Mohamed.Becherif@utbm.fr

Dr. Haitham Saad MOHAMED RAMADAN,
CALL FOR PAPERS

Special Issue on “SMC based observation, identification, uncertainties compensation and fault detection”

http://www.ajc.org.tw

Sliding Mode Observers (SMO) are the only type of observers that even for the system with unknown inputs ensuring finite (or even fixed)-time exact convergence to the real system states. Moreover, SMO based on higher-order sliding modes provides best possible accuracy of states and unknown inputs estimation in the presence of sampling or deterministic noises.

Recently, a lot of new results were obtained in the field like fixed-time convergent differentiators, algorithms for finite- and fixed-time parameter identification.

The main goal of proposed Special Issue is to summarise the theoretical results about SMO results in the field and present different applications. The principal topics planned to be covered are as follows:

- Sliding Mode Based Differentiators
- SMO for nonlinear systems
- SMO for descriptor systems
- SMO for switched systems
- SMO based uncertainties compensation
- SMO Based parameter identification
- SMO Based Fault Detection
- SMO Based Fault Tolerant Control
- Applications of SMOs

Important Dates:

- February 28, 2018 Deadline for submissions
- May, 2018 Completion of First Review
- September, 2018 Completion of Final Review
- October, 2018 Receipt of Final Manuscript
- January, 2019 Publication (Tentatively Vol. 21, No. 1)

Guest Editors:

- Dr. Leonid Fridman
 National Autonomous University of Mexico, Mexico
 lfridman@unam.mx

- Dr. Hamid Reza Karimi
 Politecnico di Milano, Italy
 hamidreza.karimi@polimi.it

- Dr. Yueying Wang
 Shanghai University of Engineering Science, China
 wyy676@126.com

- Dr. Peng Shi
 University of Adelaide, Australia
 peng.shi@adelaide.edu.au
About AJC
The Asian Journal of Control, an ACA (Asian Control Association) affiliated journal, is the first international journal originating from the Asian Pacific region and being recognized by the major body of control researchers in this region. The Asian Journal of Control publishes bimonthly high-quality papers on original theoretical and experimental research and development in the areas of control, involving all facets of control theory and its application. Functionally, this journal not only provides a forum where control researchers and practitioners can exchange their knowledge and experiences in control areas, but also serves as an educational means for students and any others who would like to learn new topics in this technical area. The journal aims to be a key interface between control communities within the Asian Pacific region and throughout the world and is listed by Science Citation Index Expanded.

How to submit
Potential authors are encouraged to upload the electronic file of their manuscript (in PDF format) through the journal’s online submission website: http://mc.manuscriptcentral.com/asjc.
If you encounter any submission problem, please contact Prof. Li-Chen Fu.
Editor-in-Chief: Professor Li-Chen Fu
Department of Electrical Engineering, EE II-524 Tel: +886-2-3366-3558
National Taiwan University Fax: +886-2-2365-4267
Taipei 10617, Taiwan E-mail: lichen@ntu.edu.tw
All submission should include a title page containing the title of the paper, an abstract and a list of keywords, authors' full names and affiliations, complete postal and electronic address, phone and fax numbers. The contacting author should be clearly identified. For detailed submission guidelines, please visit: http://wileyonlinelibrary.com/journal/asjc.

4.9. CFP: IET Cyber-Physical Systems: Theory & Applications
Contributed by: Zhen Ni, zhen.ni@sdstate.edu
IET Cyber-Physical Systems: Theory & Applications Call for Papers
SPECIAL ISSUE ON: Cyber Physical Power Systems: Advanced Intelligent Technologies and Applications
With the spread of information & communication technologies (ICTs) and cyber and internet technologies, power systems are progressively evolving into Cyber-Physical Power Systems (CPPS). CPPS are emerging technologies characterized by major industrial and societal impacts which, in turn, require significant research developments in areas related to the deep integration of smart grid and information systems. The straight use of standard ICTs may not work for CPPSs since, here, we need to take into account the tight coupling between cyber and physical systems. Therefore, the interdependency of the power system and its associated cyber properties should be investigated. It appears that advanced intelligent technologies must be developed to deal with challenges arising from multiple timescales, the presence of uncertainty and the existence of reliability concerns and security issues related to power systems. It is expected that these intelligent technologies can improve power system performance in terms of security, efficiency, reliability and, last but not least, make a strong economic impact.

This Special Issue aims to gathering research material so as to crystallize state-of-the-art of the research on CPPS technologies and their applications. The areas of interest include, but are not limited to:

- Computational intelligence techniques for CPPS
- Intelligent substation technologies of CPPS
Contributions are invited for a special issue of the IEEE Transactions on Control Systems Technology devoted to the subject of System Identification and Control in Biomedical Applications. The purpose of this special issue is to document the current status of research in this field through an original collection of diverse, high-quality papers. The emphasis is on the role control systems technology plays in advancing the state of the art in the challenges of applying feedback control in living organisms, with emphasis on biomedicine. Specifically, we aim at (i) pointing out theoretical and practical issues specific to bio-medical systems, (ii) bringing together solutions developed under different settings with specific attention to the validation of these tools in bio-medical settings using real-life datasets and experiments, and (iii) introducing significant case studies. Topics of common interests include (but are not limited to) the following:

- theoretical and implementation challenges which arise in medical systems,
- control engineering tools for solving specific system design problems in medical technology,
- novel data-driven modeling techniques capturing the dynamics of biomedical systems, and accounting for intra- and inter-individual variability,
- evidence of successful projects in biomedicine enabled by system identification and control, such as the artificial pancreas and closed-loop anesthesia,
- application areas in healthcare and medical systems, such as assistive devices and therapeutics in medical rehabilitation, and mathematical models of infectious disease spread,
- prevention and treatment of chronic, relapsing disorders and illnesses such as cancer, diabetes, obesity, and HIV.

Only contributions that include significant results based on analysis of real data or experimental validation will be included. Papers must contain high-quality original contributions and be prepared in accordance with the IEEE Transactions on Control Systems Technology standards. Prospective authors should state in their cover letter and in the notes section of the submission site that their manuscript is intended for the special issue on “system identification and control in biomedical applications.” Submitted manuscripts must not have been previously published or be under review for possible publication elsewhere.
Time line:
Manuscripts Due: November 1, 2017
Notification to authors (after the first round of reviews): March 1, 2018
Notification of final decision: June 1, 2018
Publication Date: January 2019
Authors can submit their manuscripts via https://mc.manuscriptcentral.com/tcst
Information for Authors prior to submitting a paper is available via http://www.ieeecss.org/publications/tcst/information-authors
All inquiries should be directed to G. Mercère you can contact via his email address: guillaume.mercere@univ-poitiers.fr
Guest Editors:
Guillaume Mercere, Universite de Poitiers, France (LEAD)
Bayu Jayawardhana, University of Groningen, The Netherlands
Alexander Medvedev, Uppsala University, Sweden
Daniel E. Rivera, Arizona State University, Tempe, Arizona, USA
Caterina Scoglio, Kansas State University, Manhattan, Kansas, USA

5. Conferences

5.1. ACM International Conference on Hybrid Systems: Computation and Control
Contributed by: Kostas Margellos, kostas.margellos@eng.ox.ac.uk

HSCC 2018 CALL FOR PAPERS
21st ACM International Conference on Hybrid Systems: Computation and Control (HSCC)
April 11-13, 2018,
Porto, Portugal
URL: www.hscc2018.deib.polimi.it

Important dates:
Paper submission deadline: October 6, 2017 (11:59pm UTC-12)
Notification: December 2017
Camera-ready: February 2018
Conference dates: April 11-13, 2018
* Please refer to the conference website for up-to-date submission information. *

Paper submission information:
Regular papers (maximum 10 pages, 10pt font, two-column ACM format)
Tool and Case Study Papers (maximum 6 pages, 10pt font, two-column ACM format)
Demos and posters:
Demos (maximum 2 pages, 10pt font, two-column ACM format, title should begin with “Demo”)
Posters (maximum 2 pages, 10pt font, two-column ACM format, title should begin with “Poster”)
Awards:
- Best Repeatability Evaluation Award; Papers would be eligible upon passing the repeatability evaluation process and receive the “artifact evaluated” badge.
- Best Paper Award *New*
- Test-of-Time Award *New*

Conference scope:
HSCC 2018 is the 21st in a series of conferences and is part of the eleventh Cyber Physical Systems Week, and co-located with the International Conference on Cyber-Physical Systems, Internet-of-Things Design and Implementation, Information Processing in Sensor Networks, the Real-Time and Embedded Technology and Applications Symposium, and related workshops.

It focuses on original research on concepts, tools, and techniques from computer science, control theory, and applied mathematics for the analysis and control of hybrid systems, with an emphasis on computational aspects. By drawing on strategies from computation and control, hybrid systems theory finds application in both man-made cyber-physical systems (ranging from small robots to global infrastructure networks) and natural systems (ranging from biochemical networks to physiological models). Papers are expected to cover a wide spectrum of topics from theoretical results to practical considerations, from academic research to industrial adoption, including but not limited to:

- Mathematical foundations, computability and complexity
- Analysis, verification, validation, and testing
- Modeling paradigms and techniques
- Design, synthesis, planning, and control
- Programming and specification languages
- Network science and network-based control
- Security, privacy, and resiliency in cyber-physical systems with a focus on computation and control
- Artificial intelligence and machine learning in control algorithms
- Software tools
- Applications and industrial case studies in: automotive, transportation, autonomous systems, avionics, energy and power, robotics, medical devices, manufacturing, systems and synthetic biology, models for the life sciences, and other related areas

Program Committee Chairs:
Maria Prandini, Politecnico di Milano
Jyotirmoy V. Deshmukh, University of Southern California

Repeatability Evaluation Chair:
Sergiy Bogomolov, Australian National University

Publicity Chair:
Kostas Margellos, University of Oxford

Demo and Poster Session Chair:
Jens Oehlerking, Robert Bosch GmbH

Awards Chair:
Akshay Rajhans, The MathWorks

Program Committee:
See conference website.

Steering Committee:
Rajeev Alur, University of Pennsylvania
Werner Damm, OFFIS
John Lygeros, ETH Zurich
5.2. World Congress: Mathematical Problems in Engineering, Aerospace and Sciences
Contributed by: Seenith Sivasundaram, seenithi@gmail.com
World Congress: Mathematical Problems in Engineering, Aerospace and Sciences
WHEN: July 3, 2018 – July 6, 2018
WHERE: American University of Armenia, Yerevan
Website: http://www.icnpaa.com
ICNPAA’s AIM
Mathematical Problems in Engineering, Aerospace and Science have stimulated cooperation among scientists from a variety of disciplines. Developments in computer technology have additionally allowed for solutions of mathematical problems. This international forum will extend scholarly cooperation and collaboration, encouraging the dissemination of ideas and information.

The conference will have a pool of active researchers, with a proper balance between academia and industry, as well as between senior and junior researchers, including graduate students and post-doctoral fellows. It is anticipated that such a balance will provide both senior and junior researchers an opportunity to interact and to have a wider picture of recent advances in their respective fields. The conference, especially, enables the setting up of new interdisciplinary research directions among its participants by establishing links with world renowned researchers, making possible joint international projects that will no doubt bring about fresh and innovative ideas and technologies in engineering, aerospace and sciences

Co-Sponsored by: AIAA: American Institute of Aeronautics and Astronautics
IFIP: International Federation of Information Processing
American University of Armenia, Yerevan

The proceedings will be published by the American Institute of Physics.
AIP Conference Proceedings are indexed in:
- Astrophysics Data System (ADS)
- Chemical Abstracts Service (CAS)
- Crossref
- EBSCO Publishing
- Electronic Library Information Navigator (ELIN), Sweden
- Elsevier – SCOPUS
- International Atomic Energy Agency (IAEA)
- Thomson Reuters (ISI)

5.3. International Conference on Unmanned Aircraft System
Contributed by: Youmin Zhang, Youmin.Zhang@concordia.ca
First Call-for-Papers: 2018 International Conference on Unmanned Aircraft Systems (ICUAS’18)
(http://www.uasconferences.com)
On behalf of the ICUAS’18 Organizing Committee, this is to invite you to submit your contributions to the 2018 International Conference on Unmanned Aircraft Systems (ICUAS’18; http://www.uasconferences.com). The conference is co-sponsored by the IEEE CSS and RAS, and several other organizations.

The ICUAS’18 will be held on June 12-15, in the Dallas Marriott City Center, http://www.marriott.com/hotels/travel/daldt-dallas-marriott-city-center that is situated in the heart of a vibrant Arts District area. June 12 will be a Workshop/Tutorial day, followed by a three-day technical Conference on June 13-15. Judging from the interest ICUAS has drawn over the past eight years and its growth, ICUAS’18 is again expected to continue on this path and attract the highest number of participants from academia, industry, federal and state agencies, government, the private sector, users, practitioners and engineers who wish to be affiliated with and contribute technically to this highly demanding and evolving and expanding field. Details may be found at http://www.uasconferences.com and related links. ICUAS’18 is fully sponsored by the ICUAS Association, which is a non-profit organization. Information about the Association may be found at www.icuas.com. The theme of ICUAS’18 will be twofold: UAS/RPAS design for assured autonomy and regulations, policy and law to enable UAS/RPAS technologies, both important and timely topics. The main novelty of ICUAS’18, is a completely separate track on regulations, policy, legal and ethical issues that are essential to allow for integration of UAS/RPAS in the national airspace. National and international organizations, agencies, industry, military and civilian authorities are working towards defining roadmaps of UAS expectations, technical requirements and standards that are prerequisite to their full utilization, as well as legal, policy and ethical issues. The next generation of UAS is expected to be used for a wide spectrum of civilian and public domain applications. Challenges to be faced and overcome include, among others, see-and-avoid systems, robust and fault-tolerant flight control systems, payloads, communications, levels of autonomy, manned-unmanned swarms, network-controlled swarms, as well as challenges related to policies, procedures, regulations, safety, risk analysis assessment, airworthiness, certification issues, operational constraints, standardization and frequency management, all of paramount importance, which, coupled with ‘smart’, ‘environmentally friendly’ cutting edge technologies will pave the way towards full integration of UAS with manned aviation and into the respective national airspace.

ICUAS’18 aims at bringing together different groups of qualified military and civilian representatives worldwide, organization representatives, funding agencies, industry and academia, to discuss the current state of UAS advances, and the roadmap to their full utilization in civilian and public domains. Special emphasis will be given to current and future research opportunities, and to ‘what comes next’ in terms of the essential technologies that need to be utilized to advance further UAS.

Conference topics include (but not limited to): Airspace Control; Integration; See/Sense-Detect-and-Avoid Systems; Airspace Management; Interoperability; Security; Airworthiness; Levels of Safety; Sensor Fusion; Autonomy; Manned/Unmanned Aviation; Smart Sensors; Biologically Inspired UAS; Micro- and Mini- UAS; Standardization; Certification; Networked UAS; Technology Challenges; Control Architectures; Payloads; Training; Energy Efficient UAS; Path Planning and Navigation; UAS Applications; Environmental Issues; Regulations; UAS Communications; Fail-Safe Systems; Reliability of UAS; UAS Testbeds; Frequency Management; Risk Analysis; UAS Transportation Management (UTM); Policy/Regulation/Law Aspects.

Unmanned system autonomy, collaboration and coordination, formation control, validation and verification and unmanned system design for assured autonomy, are topics of great interest to ICUAS’18.

Through Keynote addresses, round table panel discussions and presentations, it is expected that the outcome of the Conference will be a clear understanding of what industry, military, civilian, national/international authorities need, and what are the crucial next steps that need to be completed before UAS are utilized in everyday life applications.
IMPORTANT DATES (Please check the latest information at http://www.uasconferences.com)
February 12, 2018: Full Papers/Invited Papers/Tutorial Proposals Due
April 15, 2018: Acceptance/Rejection Notification
May 7, 2018: Upload Final, Camera Ready Papers
April 15 - May 7, 2018: Early Registration

PAPER SUBMISSION
All papers must be submitted and uploaded electronically. Go to https://controls.papercept.net. Click on the link "Submit a Contribution to ICUAS’18" and follow the steps. The paper format must follow IEEE paper submission rules, two-column format using 10 point fonts, Times New Roman. The maximum number of pages per submitted paper is 10. For accepted papers, up to two additional pages will be permitted for a charge of $100 per additional page. Illustrations and references are included in the page count. Invited and Special Sessions: Proposals for invited/special sessions must be submitted/uploaded electronically. A Summary Statement describing the motivation and relevance of the proposed session, invited paper titles and author names must be uploaded electronically by February 12, 2018. In addition, authors must submit FULL versions of invited papers electronically, through https://controls.papercept.net. Each paper must be marked as 'Invited Session Paper'. Workshops/Tutorials: Proposals for workshops/tutorials should contain title, the list of speakers, and extended summaries (2000 words) of their presentations. Proposals must be sent by e-mail to the Tutorial/Workshop Chair by February 12, 2018. Paper Review Process: All submitted papers will undergo a peer review process coordinated by the Program Chairs, Advisory Committee Members, IPC members and qualified reviewers. Authors will be notified of results at the latest by April 15, 2018. Accepted papers must be uploaded electronically no later than May 7, 2018. Authors are encouraged to accompany their presentations with multimedia material, which will be included in the Conference Digital Proceedings. Conference Proceedings will be acquired by IEEE and they appear in IEEE Xplore.

Welcome and look forward to receiving your contributions and attendance to the ICUAS’18! For information about the ICUAS Association, Inc., see www.icuas.com.

ICUAS ASSOCIATION LIAISON
Kimon P. Valavanis, U of Denver, kimon.valavanis@du.edu

HONORARY CHAIRS
Frank Lewis, U of Texas at Arlington, lewis@uta.edu
Mark W. Spong, U of Texas at Dallas, mspong@utdallas.edu

GENERAL CHAIRS
Younin Zhang, Concordia Univ., ymzhang@encs.concordia.ca
Fulvia Quagliotti, Politecnico di Torino, fulvia.quagliotti@polito.it
Dawn Zoldi, US Air Force Academy, zoldidmk@gmail.com

PROGRAM CHAIRS
Didier Theilliol, U of Lorraine, Didier.theilliol@univ-lorraine.fr
Tor Arne Johansen, NTNU, tor.arne.johansen@ntnu.no

5.4. International Conference on Control, Automation and Systems
Contributed by: Hye-Soo Kim, conference@icros.org

2017 17th International Conference on Control, Automation and Systems (ICCAS 2017)
October 18(WED)-21(SAT), 2017
CALL FOR PAPERS:

The aim of the ICCAS is to bring together researchers and engineers worldwide to present their latest works, and disseminate the state-of-the-art technologies related to control, automation, robotics, and systems.

Indexed in: IEEE Xplore, EI compendex, and SCOPUS

PLENARY SPEAKERS
- Richard D. Braatz (Massachusetts Inst. of Tech., USA)
 "New Directions in the Control in Advanced Manufacturing Systems"
- Reza Moheimani (Univ. of Texas at Dallas, USA)
 "On-Chip Atomic Force Microscope: Why and How?"
- Antonella Ferrara (Univ. of Pavia, Italy)
 "Modern Sliding Mode Control with Application to Automotive Systems"
- Huijun Gao (Harbin Inst. of Tech., China)
 "Network-Based Control and Estimation"
- Atsuo Takanishi (Waseda Univ., Japan)
 "Humanoid Robotics Research and Its Applications"

VENUE: The Jeju is the largest island off the coast of the Korean Peninsula. The Jeju contains the natural World Heritage Site Jeju Volcanic Island and Lava Tubes, and has a temperate climate.
- Selected as the New 7 Wonders of Nature
- Only place in the world that has been certified by UNESCO Triple Crown in Natural Science: Biosphere Reserves, World Natural Heritage, World Geological Park
- Designated by WHO (World Health Organization) as an International Safe City
- No visa entry and 30-day stay for 187 countries including China

ACCOMMODATION: ICCAS 2017 participants can reserve rooms at the appointed hotels at a special (discounted) rate. View details: http://2017.iccas.org/?page_id=63

Organization:
- Organized by Institute of Control, Robotics and Systems (ICROS)
- Technically Co-Sponsored by IEEE IES, IEEE CSS, IEEE RAS, SICE, CAA, CACS, ECTI, CAAI, and ISA

General Chair: Dong-il “Dan” Cho (Seoul Nat’l Univ., Korea / ICROS President)
Organizing Chair: Doyoung Jeon (Sogang Univ., Korea)
Program Chair: Hyosung Ahn (GIST, Korea)

5.5. IFAC Symposium on Robust Control Design and IFAC Workshop on Linear Parameter Varying Systems
Contributed by: Daniel Coutinho, daniel.coutinho@ufsc.br

ROCOND’18 & LPVS’18
9th IFAC Symposium on Robust Control Design (ROCOND’18) and 2nd IFAC Workshop on Linear Parameter Varying Systems (LPVS’18) - Florianopolis, SC, Brazil, September 03-05, 2018
http://rocond18.ufsc.br http://lpvs18.ufsc.br
Important Dates:
Submission site opens 15/10/2017
Open track session submission deadline 15/01/2018
Draft paper submission deadline 15/01/2018
Acceptance/rejection notification 15/04/2018
Final manuscript submission deadline 15/05/2018
Registration site opens 03/05/2018
Early registration deadline 03/06/2018

The Organizing Committees have the pleasure of inviting you to participate in the joint 9th IFAC Symposium on Robust Control Design (ROCOND’18) and 2nd IFAC Workshop on Linear Parameter Varying Systems (LPVS’18) to be held in Florianopolis, Brazil, September 3-5, 2018. The joint ROCOND’18 and LPV’18 will be held at the conference center of Majestic Palace Hotel near downtown Florianopolis. Majestic Palace Hotel is a 5-star hotel offering luxury accommodation, stunning views of the North Bay, and located just minutes from Shopping Malls, several beaches on the north, south and east of Santa Catarina Island.

IFAC Young Author Prize

It will be awarded a prize for the best paper in the joint ROCOND’18 and LPV’18 for an author younger than 30 years by September 1st 2018. The author should be the first (corresponding) and presenting author of the paper. The prize and a certificate will be awarded at the closing ceremony of the joint ROCOND’18 and LPV’18.

Scope and Topics:
ROCOND 2018 - Over the last three decades, robust control has been a topic of active research and development of new theoretical principles, numerical methods and effective control algorithms to design and implement complex engineering control systems that provide adequate performance and stability when implemented in real plants. Emphasis will be put on current challenges and new directions in development of theoretical and computational tools for versatile practical applications implemented on advanced control systems (networked, embedded, distributed control systems) and are not purely devoted to robust control design.

LPVS 2018 - The class of Linear Parameter Varying (LPV) systems can be used to represent several types of dynamical systems such as time varying uncertain, non-linear, switching or multi-models ones. The LPV modeling allows also the design of the so-called LPV controllers, where the control law parameters are updated according to the measurable plant varying parameters. In the last two decades, LPV systems and control have been an active topic of research in the control systems community. This Workshop aims at presenting new results in the field of LPV systems and their applications in real life and industry (automotive, aerospace, robotics, chemical processes, biological systems, energy and nuclear, network controlled-systems), including aspects on modeling, identification, stability, control design, observation and diagnosis.

Author Guidelines
The joint ROCOND’18 & LPVS’18 invite four types of submission: ROCOND Regular or Open Invited Track papers, and LPVS Regular or Open Invited Track papers. For the purpose of review only, all submitted manuscripts may be up to eight (8) pages long. However, normal length for the final manuscript is limited to six (6) pages. Papers exceeding the normal length may be submitted upon payment of over length page charges of EUR 100.00 for each page in excess of six. A maximum of two extra pages above normal six are permitted.

Rocond 2018 Organizing Committee:
NOC Chair Prof. Dr. Eugênio B. Castelan (UFSC, Brazil)
6. Positions

6.1. PhD: University of Massachusetts Lowell, USA

Contributed by: Ioannis Raptis, ioannis_raptis@uml.edu

Ph.D. Students - Distributed Fault Diagnosis For Large-Scale Systems

Applications are invited for two Ph.D. positions in Distributed Fault Diagnosis for Large-Scale Nonlinear Stochastic Systems. The positions are with the Department of Mechanical Engineering at the University of Massachusetts Lowell and the students will work under the supervision of Dr. Ioannis Raptis. The research has analytical, computational and experimental components. The project involves the derivation of distributed estimation-based algorithms for complex processes. The results of this work will be disseminated to contemporary large-scale systems of interest such as mobile robots, power grid systems, water distribution networks, and transportation systems.

Students from all majors relevant to estimation theory, applied mathematics, and control systems are encouraged to apply. The successful candidate should hold a Master’s degree in Engineering or Science. Preference will be given to students with strong background in probability theory, Bayesian signal processing, and stochastic systems. Good communication skills (written and oral) are essential.
The assistantship includes a tuition waiver and a graduate student stipend. Review of submissions will begin immediately. Interested students are strongly encouraged to apply early, as the hire of successful candidates will take place on first-come-first-served basis. The desired start date is January 2018.

To Apply:
Please email, as a single .pdf document: (i) a cover letter (clearly indicating expected start date, relevant experience, and motivation); (ii) detailed Curriculum Vita; (iii) copies of unofficial transcripts; and, (iv) copies of relevant publications (if any) (Ioannis_Raptis@uml.edu). Only shortlisted applicants will be directed to apply to the Department of Mechanical Engineering at UMass Lowell.

6.2. PhD: Slovak University of Technology in Bratislava, Slovakia
Contributed by: Miroslav Fikar, miroslav.fikar@stuba.sk

The Institute of Information Engineering, Automation and Mathematics at Slovak University of Technology in Bratislava has vacancies for two PhD positions:

1. Guaranteed Parameter Estimation (advisor: Prof. Miroslav Fikar, consultant: Dr. Radoslav Paulen)
2. Optimal Control of Membrane Processes (advisor: Prof. Miroslav Fikar)

The project descriptions are available at http://uiam.sk/ fikar/phd.phtml

Requirements: The applicant should have obtained an M.Sc. degree in a field related to the particular project, such as chemical engineering, systems & control, mechanical engineering, electrical or electronics engineering, or computer science. A good command of the English language is required.

Conditions of employment: The positions are vacant immediately and run for four years. The successful candidate will be enrolled in the university graduate school. Salary and benefits are in accordance with the Slovak legislation regarding research and education bodies.

Application: Please send your application including a motivation letter, a curriculum vitae, a list of courses with grades, and contact information for two academic references to Prof. Miroslav Fikar (miroslav.fikar@stuba.sk).

6.3. PhD: Université Laval, Canada
Contributed by: André Desbiens, desbiens@gel.ulaval.ca

Three PhD positions are available at the LOOP (Laboratoire d’observation et d’optimisation des procédés – Process Observation and Optimization Laboratory), Université Laval, Québec City, Canada. The projects are in collaboration with the multinational biopharmaceutical Pfizer. They address industrial problems and the solutions will have significant impacts for Pfizer.

For pharmaceutical industries, automation and continuous processing is a way to become more competitive, to reduce production time, energy consumption and the amount of waste produced. Towards this objective, the projects are:

Project #1 - Coating of the tablets: development of an in-line vision sensor providing film-coating properties (coating level, distribution across tablets, esthetical defects, etc.).
* Fractional factorial design
* Multivariate Image Analysis
* Partial Least Squares regression
* Validation of the machine vision sensor
Project #2 – Novel continuous drying of the granules (before they are compressed into tablets): safe and robust in-line minimization of the drying time and/or energy consumption while insuring a desired final humidity of the particles and avoiding their overheating.

* First-principles modelling and model calibration
* State estimation
* Model predictive control
* Real-time optimization

Project #3 - Freeze-drying of vials: safe and robust in-line minimization of the primary drying time and/or energy consumption while insuring that sublimation is completed and avoiding to exceed the collapse temperature.

* First-principles modelling and model calibration
* State estimation
* Model predictive control
* Real-time optimization
* Heating policies for various vials arrangements

The final stage of the three projects is to implement and validate the most promising approaches on pilot units.

Candidate profile:
* should have completed, or about to complete, a MSc degree in Electrical or Chemical Eng., or related areas,
* strong background in multivariate statistics and/or first-principles modelling and/or systems and control,
* solid programming skills in Matlab,
* ability to work in multi-disciplinary teams,
* excellent communication skills (oral and written) in English - a plus if knowledge of French (courses are given in French).

Please send a complete CV, a motivation letter and transcripts to Prof. André Desbiens (desbiens@gel.ulaval.ca) with the subject "E-Letter PhD position".

6.4. PhD: University of Sannio in Benevento, Italy
Contributed by: Davide Liuzza, davide.liuzza@unisannio.it

PhD Position available at the Department of Engineering of the University of Sannio in Benevento, Italy
Contacts: Prof. Luigi Glielmo (email glielmo@unisannio.it), Dr. Davide Liuzza (email davide.liuzza@unisannio.it)

The GRACE (Group for Research on Automatic Control Engineering) at the University of Sannio offers a PhD position in control theory and applications to be started in October 2017. The successful candidate will collaborate to our group’s research on control and optimization theory, including their implementation in different areas.

Such areas comprise control of energy flows in smart grid, control of cyber-physical system, machine learning application to industrial processes, with special emphasis on the energy application.

Our ideal candidate has a sound knowledge in control and optimization methods from his/her Bachelor and Master degree, an excellent academic track record, well developed analytical and problem solving skills and a strongly motivated personality. Interests in both theoretical research and applications to practical control problems as well as the ability of working independently complete the candidate profile.
The candidate will be selected according to applicant fulfilment of the above qualifications. Interested candidates must send detailed CV and two contacts to whom we can ask references to the email address davide.liuzza@unisannio.it.

Answers will be given at the beginning of September, 2017.

The selected candidate will join the control system group at the University of Sannio, Benevento, Italy.

6.5. PhD: KU Leuven, Belgium

Contributed by: Jan Swevers, jan.swevers@kuleuven.be

One fully funded PhD position in the area of optimal robot control at the Department of Mechanical Engineering, KU Leuven

Title of the project: REAL-TIME MOTION PLANNING AND FAST MODEL PREDICTIVE CONTROL FOR ROBOTS

The KU Leuven, Department of Mechanical Engineering is searching for a young, motivated and skilled PhD researcher with a strong background in numerical optimization, systems and control, and robotics.

RESEARCH PROJECT: This project focuses on optimal contact-free motion control of serial robots operating in changing environments. Changing environments require real-time motion planning, which is very challenging due to complex robot kinematics and dynamics and continuously changing collision constraints. The overall project goal is to develop and experimentally validate an effective MPC approach for serial robots that realizes contact-free optimal robot motion planning and control in real-time. This research will be supported by an MPC toolchain development in order to integrate all software in an open and modular fashion as to create a workflow from problem specification to deployment. All developments will be validated experimentally on industrial robotic set-ups in the lab.

YOUR PROFILE: An ideal candidate has a master degree in engineering (mechanical, control ...) and a strong background in control and dynamic system modelling, robotics, numerical optimization, programming (Matlab, C/C++), a strong interest and experience in work on real-world experiments, and enthusiasm for the project. Proficiency in English is a requirement. Applicants whose mother tongue is neither Dutch nor English must present an official language test report. The acceptable tests are TOEFL, IELTS, and Cambridge Certificate in Advanced English (CAE) or Cambridge Certificate of Proficiency in English (CPE).

Required minimum scores are:
- TOEFL: 600 (paper-based test), 100 (internet-based test)
- IELTS: 7 (only Academic IELTS test accepted)
- CAE/CPE: grade B or A.

OUR OFFER: A fully funded PhD position for four years at the KU Leuven. KU Leuven is among the top European universities and a hub for interdisciplinary research in the field of optimization. You will be embedded in the MECO research team of the department of Mechanical Engineering located at the campus in Leuven and the new mechatronics research group, established in 2015, and located at the campus in Bruges. Theoretical work and lab experiments, which will be the main part of the work, will be carried out at the campus in Leuven. Industrial applications will be implemented at the campus in Bruges.

APPLICATION PROCEDURE: To apply, send email to jan.swevers@kuleuven.be. Subject of your email should be: “ROBOT MPC PhD application”. Deadline: October 31, 2017! Include:
- an academic CV,
- a pdf of your diplomas and transcript of course work and grades,
- statement of research interests and career goals (max. 2 pages),
- sample of technical writing (publication or thesis),
- contact details of at least two referees,
- proof of English language proficiency test results.

6.6. PhD/PostDoc: University of Kansas, USA

Contributed by: Huazhen Fang, fang@ku.edu

PhD/Postdoc: University of Kansas, USA

Applications are invited for a postdoctoral and a Ph.D. student position in Dr. Huazhen Fang’s group at the Department of Mechanical Engineering, University of Kansas. Both positions are anticipated to start as early as January 2018. The projects will be concerned with estimation and filtering for linear and nonlinear systems. The candidates will work on fundamental research involving Bayesian estimation, Kalman filtering, particle filtering, machine learning and optimization. A background in the broad areas of estimation, detection, control, signal processing, mathematics, and machine learning will be desirable. A Ph.D. degree is needed for the postdoctoral position, and a master’s degree is preferred but not required for the Ph.D. position.

The postdoctoral appointment is for one year, with possible extension contingent on availability of funds and research performance. The salary will be in accordance with the postdoctoral salary scale of the University of Kansas. The successful Ph.D. applicant will be awarded a competitive scholarship covering both tuition and living expenses.

Correspondence can be addressed to Dr. Huazhen Fang at fang@ku.edu. For more information about Dr. Fang and his research, please visit http://fang.faculty.ku.edu.

6.7. PhD/PostDoc: New York University Abu Dhabi, UAE

Contributed by: Nikolaos M. Freris, nf47@nyu.edu

RESEARCH OPPORTUNITIES IN CYBERPHYSICAL SYSTEMS

The Cyberphysical Systems Lab at New York University Abu Dhabi is hiring PhD Students and Postdoctoral Fellows.

About: The focus of the Cyberphysical Systems Lab (CPSLab) is to conduct interdisciplinary research across a broad range of topics and applications pertaining to cyberphysical systems such as: a) distributed algorithms for estimation, optimization and control, b) big data: data mining/machine learning, c) wireless sensor networks, d) system theory: control & optimization, e) signal processing: sparse sampling and online algorithms, as well as applications in transportation, robotics, cyber security, networking, and biomedical modeling.

Requirements: PhD applicants must hold (or be close to completing) an MS degree, and postdoctoral fellow applicants a PhD degree, in Electrical Engineering, Computer Science or Applied Mathematics, with research experience in at least one of the aforementioned areas. PhD applicants need to additionally apply directly to NYU (http://engineering.nyu.edu/admissions/graduate) for admission by Dec. 15. A proven publication record, solid mathematical background, excellent communication skills, and the ability to work in multi disciplinary teams are essential. Applicants must submit a CV, cover letter, research statement with
detailed research plan, and the names and contact information for three recommenders, in a single PDF file to Prof. Nick Freris (nf47@nyu.edu).

Start date & Salary: The start date is flexible. A very competitive salary and benefits package (including relocation, housing, insurance, transportation and conference travel support) are provided – note: UAE do not levy any income tax.

For more information, please visit: https://wp.nyu.edu/cpslab

About NYUAD: New York University has established itself as a Global Network University, a multi-site, organically connected network encompassing key global cities and idea capitals. The network has three foundational degree-granting campuses: New York, Abu Dhabi, and Shanghai, complemented by a network of 12 research and study-away sites across five continents. Faculty and students circulate within the network in pursuit of common research interests and the promotion of cross-cultural and interdisciplinary endeavors, both local and global. Entering its eighth year, NYU Abu Dhabi has recruited a cohort of faculty who are at once distinguished in both research and teaching. Our students are drawn from around the world and surpass all traditional recruitment benchmarks, both US and global. NYU Abu Dhabi’s highly selective liberal arts enterprise is enhanced by an institute for advanced research, sponsoring cutting-edge projects across the Arts, Humanities, Social Sciences, Sciences, and Engineering. NYUAD is housed at a newly built campus in the vibrant city of Abu Dhabi, the capital of UAE.

6.8. PhD/PostDoc: University of Melbourne, Australia

Contributed by: Girish Nair, gnair@unimelb.edu.au

Post-doctoral and PhD Positions, University of Melbourne, Australia

Topic: Filtering, Control and Causal Estimation using Nonstochastic Information Theory

One Post-doctoral and two PhD positions are available to investigate the use of nonstochastic and zero-error information theory in filtering, control and causal inference problems with deterministic disturbances or unknown noise distributions. These positions are based in the Department of Electrical and Electronic Engineering, University of Melbourne, Australia, and support an Australian Research Council project.

**Post-doctoral applicants should have a theoretically-focused PhD in a relevant area. Knowledge of probability theory and random sampling methods would be useful.

Salary: from AU$87,415/year before tax, plus employer superannuation contribution of 9.25%.

Duration: one year including probation period. Extensions are subject to performance and funding.

Starting date: flexible, but preferably before Feb 2018.

To express interest, please email a research statement and CV, with 3 referees listed, to Prof. Girish Nair, gnair@unimelb.edu.au

**PhD candidates should have a Bachelors and/or Masters degree with a strong background in control or information theory. Knowledge of probability theory would be helpful. Candidates must also meet the PhD admission requirements of the Department of Electrical and Electronic Engineering and the University of Melbourne.

Stipend: AU$30,000/year tax-free for 3.5 years, with up to AU$15,00 for travel and conferences; subject to passing Departmental confirmation after one year.

Starting date: flexible, but preferably before Feb 2018.
6.9. PostDoc: Northeastern University, USA
Contributed by: Dagmar Sternad, d.sternad@northeastern.edu

Position for a Postdoctoral Fellow in Human Motor Control and Human-Robot Interaction

We are seeking a highly motivated postdoctoral fellow to work in the area of computational neuroscience and physical human-robot interaction. The research of Prof. Sternad’s Action Lab’s is on human motor control and learning with extensions to clinical populations and rehabilitation [http://www.northeastern.edu/actionlab/]. One recent extension is to robot control and human-robot interaction with a new line of research on “Robots with human dexterity”. This research is a collaboration with Prof. Neville Hogan at MIT.

Our interdisciplinary research program addresses questions in motor control from the perspective of dynamical system, bridging disciplinary approaches from nonlinear dynamics, biomechanics and engineering, neuroscience and psychology. The overall goal of our research is to understand the generation of perceptually controlled behavior in human systems.

Our lab is equipped with state-of-the-art experimental equipment, ranging from three virtual reality set-ups with a robot manipulandum, 3D motion analysis system, force plates and wireless EMG. We also use brain measurement and stimulation techniques, such as EEG and TMS.

Our laboratory is currently supported by the National Science Foundation and the National Institutes of Health. For more information about ongoing projects please visit our website.

Candidates should have a Ph.D. in one of the following disciplines: Computational Motor Neuroscience, Physics, Mechanical, Electrical or Computer Engineering, the latter with an emphasis on Robotics and interest in human motor control. The applicant should demonstrate an academic record of scientific excellence, independent research, and a strong interest in an interdisciplinary approach to human and robotic motor control. Experience in programming is expected (Matlab, C++, Statistics packages, etc.). He/she is expected to get involved in existing research projects, but is also encouraged to bring to bear his/her expertise into the research project.

The Action Lab is located in the Departments of Biology, Electrical and Computer Engineering, and Physics at Northeastern University as well as the Center for Interdisciplinary Research in Complex Systems. Northeastern University is located in the heart of Boston, which provides a stimulating environment for interdisciplinary research.

Applicants should submit a curriculum vita, including a list of publications, and two letters of recommendation to

d.sternad@northeastern.edu

Hiring will start as soon as possible.

Dagmar Sternad
Professor of Biology, Electrical and Computer Engineering, and Physics
Northeastern University
360 Huntington Avenue
Boston MA 02115
d.sternad@northeastern.edu

http://www.northeastern.edu/actionlab/
Postdoctoral Associate:
Stochastic Reachability for Autonomous Cyber-Physical Systems

The Department of Electrical and Computer Engineering at the University of New Mexico (UNM) invites applications for a Postdoctoral Associate with an anticipated start date of January 2018.

Position:
The postdoctoral associate will work with an interdisciplinary team of researchers in Electrical and Computer Engineering and in Computer Science to develop theory and algorithms to enable autonomy in dynamic and uncertain environments. Specifically, the postdoctoral associate will 1) incorporate stochastic reachable sets into a model predictive control framework, and investigate convergence, convexity, and optimality, 2) develop scalable under-approximations in the case of imperfect measurements, and 3) integrate learning into stochastic reachability-based planning algorithms, to enable navigation in dynamic environments with poorly characterized uncertainty. This is a benefits-eligible, one-year appointment that may be renewed for an additional year contingent upon satisfactory performance and availability of resources. No teaching is expected during the appointment. Salary is dependent upon experience and qualification.

How to apply:
Interested candidates should provide a CV, a cover letter summarizing capabilities and interests, and contact information for three professional references. Please apply through https://hr.unm.edu/unmjobs. Applications received by November 1, 2017 will receive full consideration, although the position will remain open until filled.

Minimum Qualifications:
Applicants must have completed their Ph.D. by the time of appointment in engineering, computer science, mathematics, or a closely related field, and demonstrate excellent potential for research.

Preferred Qualifications:
Desirable experience includes work in hybrid systems, stochastic optimal control, reachability analysis, optimization, or learning. In addition, the applicant should have a demonstrated commitment to diversity, equity, inclusion, and student success, as well as working with broadly diverse communities.

About UNM:
UNM is New Mexico’s flagship institution, and is located in Albuquerque, NM, USA, a metropolitan area of 650,000 that provides a wide variety of recreational and cultural opportunities. The surrounding area is renowned for outdoor activities including hiking, mountain biking, cycling, skiing, and others. The University of New Mexico is an Equal Opportunity/Affirmative Action employer and educator. Candidates from underrepresented groups are encouraged to apply. For additional information see http://www.unm.edu.

Contributed by: Meeko Oishi, oishi@unm.edu

Postdoctoral Associate:
The Nano-Biomaterials, Robotics and Brain Health Lab at The Ohio State University seeks three postdoctoral research associates in the following areas:
1) Robotic devices for non-invasive management of Alzheimer’s Disease.
2) Mathematical modeling and control theory for brain health and performance. Specifically, creating performance models based on cognitive, physiological, biomarker, and behavioral measures.

Contributed by: Mingjun Zhang, zhang.4882@osu.edu

The Nano-Biomaterials, Robotics and Brain Health Lab at The Ohio State University seeks three postdoctoral research associates in the following areas:
1) Robotic devices for non-invasive management of Alzheimer’s Disease.
2) Mathematical modeling and control theory for brain health and performance. Specifically, creating performance models based on cognitive, physiological, biomarker, and behavioral measures.
Candidates with training in mathematics, electrical engineering, mechanical engineering, theoretical control or related fields are highly encouraged to apply for one of these positions. Desired skills include a strong background in system and control theory, mathematics, signal processing, robotics, and mechanical design.

3) Peptide nanoparticles for disease diagnosis and therapy.

Candidates with training in biomaterials, chemistry, engineering or related fields are highly encouraged to apply for this position. Desired skills include a strong background in self-assembled nanomaterials, peptide chemistry, and nano-characterization tools.

Interested applicants should send their CV and a short paragraph of interest to Dr. Mingjun Zhang: zhang.4882@osu.edu

6.12. PostDoc: University of Michigan, USA
Contributed by: Anna G. Stefanopoulou, annastef@umich.edu

Robotic Energy Control Postdoc at University of Michigan to develop methods and tools for optimal control of a hybrid (switching) power system (a robot powered from a fuel cell and a battery and the optimization of their switching under a stochastic or partially-known terrain).

Period: 2 years with possible extension
Compensation: Competitive upon qualifications, benefits, travel budget.

Applicants should have documented background and interest in modeling, identification, estimation, and optimal control. Experience in electrochemical energy storage and conversion such as batteries, fuel cells, and capacitors is desirable. Familiarity with software tools such as Matlab and Simulink is necessary.

Additional important qualifications: 1) Ability to work and lead interdisciplinary research with a large team of professors, students, industrial collaborators, and scientists. 2) Dexterity in processing data and 3) Strong motivation in experimentally implementing and verifying advanced control algorithms.

CV in pdf and further enquiries should be directed by e-mail to Anna G. Stefanopoulou (annastef@umich.edu) with "Robotic Energy Control Postdoc" in the subject.

6.13. PostDoc: Shanghai Jiao Tong University, China
Contributed by: Weidong ZHANG, wdzhang@sjtu.edu.cn

The Optimization & Control Engineering Research Center of Shanghai (in the Department of Automation, Shanghai Jiao Tong University, China) offers 3 postdoc positions in control engineering as soon as possible thereafter. We are interested in candidates in the broad areas of advanced control theory, multi-agents formation, machine learning, pattern recognition, game theory, industrial networked control systems, etc.

Requirements and qualifications:
- PhD degree
- Documented experience with research dissemination in international scientific journals
- Experience with writing research applications
- Good communication skills in English or Chinese
- Self-motivation and the ability to work both independently and as a team player with researchers from different disciplines
Main tasks:
- Active involvement in research efforts
- Supervision of student projects and thesis at both master and Ph.D. levels

Salary and others:
- RMB 120-200k/year (approximately, 18-30kUSD)
- It is a 2-year position and can be extended to 5 years

Required documents
- One self-recommendation letter covering your research statements, your achievements, as well as your possible requirements from us
- A list of your publications

For further information, please contact Prof. Dr. Weidong Zhang, Email: wdzhang@sjtu.edu.cn, Tel: +86-21-34204019. Address: Dongchuan Road 800, Shanghai Jiao Tong University, Shanghai 200240, China.

Contributed by: Mohammadreza Chamanbaz, chamanbaz.arakut@gmail.com

Opportunity for Cutting-edge Research in Network Control Systems

Singapore University of Technology and Design (SUTD) seeks to fill a post-doctoral position in the area of Network Control Systems in the Project SUTD-ASPIRE (ASPIRE – Advancing Security of Public Infrastructure using Resilience and Economics). Selected candidates will have a unique opportunity to work with an international team of researchers located in Singapore, MIT, the University of Illinois at Urbana Champaign, and the Nanyang Technological University, Singapore (NTU). The primary focus of SUTD-ASPIRE is to develop experimentally validated techniques for the design of futuristic Cyber Physical Systems that are critical to the well-being of a society.

Qualifications for the position are as follows:

Research Task: Controls
Supervisor: Prof. Roland Bouffanais, SUTD
Co-Supervisor: Prof. Mohammadreza Chamanbaz, Arak University of Technology, Iran

Qualifications: PhD holder with a background in control and systems theory. This position will investigate topics in the control of networks and attack detection on cyber physical systems. Prior work with cyber physical systems, security, and/or networks is a plus.

Duration: 1 year (with possibility of extension)
Salary Range: SGD$ 60’000-70’000 yearly

Requirements:
- Successful candidates should have received a Ph.D. degree in Engineering Control or Control Science.
- Research expertise in network control systems will be considered a plus.
- Ability to work both independently and in a team environment, and to take ownership of, and autonomously carry forward, major aspects of a research project.
- Ability of approaching research problems with a system view, of working in a multidisciplinary team environment, problem solving skills and high creativity.
- Candidates must present strong publication record, as well as excellent verbal and written communication skills.
How to Apply
Interested persons must send their updated curriculum vitae along with a brief statement of research to the following addresses: bouffanais@sutd.edu.sg and chamanbaz.arakut@gmail.com
Please state “SUTD-ASPIRE Recruitment – Controls” in the email subject. Positions will be available until filled; only short-listed candidates will be notified.

6.15. PostDoc: UIUC, USA
Contributed by: Naira Hovakimyan, nhovakim@illinois.edu

A postdoctoral position is available immediately to join ACRL at MechSE, UIUC; http://naira.mechse.illinois.edu/. The group is working on numerous directions at the intersection of optimization, control theory and machine learning with applications to robotics, cyber security and aeronautics. Exceptional background in mathematics and a mindset for interdisciplinary research with clear impact across different industries are critically important. Interested applicants should direct their CVs and names of three referees to Prof. Naira Hovakimyan at nhovakim@illinois.edu.

6.16. PostDoc: Gyeongsang National University, South Korea
Contributed by: Yoonsoo Kim, kimyoonsoo@yahoo.com

Post-doctoral research fellow in “Control design and analysis of aircraft in upset conditions”
The Graduate School of Mechanical and Aerospace Engineering in Gyeongsang National University (Jinju, Republic of Korea) has a one-year postdoctoral research fellow position (with a possible extension) in aerospace, mechanical engineering, or applied mathematics to join an active research project on control design and analysis of aircraft (with fixed or rotary wings) in upset conditions due to icing, structural failure and so on.

This one-year research shall be funded by the Engineering Research Center (ERC) project (directed by the Ministry of Science and ICT in Korea), and mainly focused on three research items: (1) Following-up state-of-art technologies for control design and analysis of aircraft in upset conditions; (2) Proposing improved control laws for aircraft (with fixed or rotary wings) in upset conditions due to icing or structural failure; and (3) Analysis and experimental test of the proposed control laws on a test aircraft (to be built by other researchers). This research shall be supervised by Principal Investigator of the ERC project (Prof. R. S. Myong) and Technical Investigator (Prof. Yoonsoo Kim).

Requirements: This position requires a PhD degree in aerospace, mechanical engineering, or applied mathematics. Research experience and a record of journal publications in control theory or application are strongly recommended.

Salary: The starting annual salary is USD 25,000 (plus basic insurance fees). Salary negotiation is possible for a candidate with an excellent research background.

To apply: A full Curriculum Vitae including a list of journal publications and the contact details of two referees must be sent to yoonsoo@gnu.ac.kr.

Closing date: The closing date is September 30, 2017.
6.17. PostDoc: University of Washington, USA
Contributed by: Linda Bushnell, LB2@uw.edu

The Network Security Lab in the Department of Electrical Engineering at University of Washington – Seattle is searching for two-year post-doctoral research associate. Positions are in the area of game- and control-theoretic modeling and mitigation of network and computer security threats. Applicants must have a PhD degree in Electrical Engineering, Computer Science, or a related field, with expertise in two or more of the areas including control theory, stochastic game theory, algorithmic game theory, and optimization, as well as background in security. Expertise in machine learning also a plus. Applicants will be expected to conduct and disseminate research, mentor graduate students, and facilitate collaboration in a multi-university research effort. Multiple positions are available. If interested, please contact Professor Linda Bushnell (lb2@uw.edu) with full CV and references.

6.18. PostDoc: Israel Institute of Technology, Israel
Contributed by: Leonid Mirkin, mirkin@technion.ac.il

Postdoctoral position at the Technion - Israel Institute of Technology

Applications are invited for a post-doctoral research position in the areas of sampled-data / event-triggered / networked control at the Faculty of Mechanical Engineering, Technion, Israel. The position is for a period of 1 year, with the possibility of renewal up to another 2 years contingent on performance. Applicants are required to have a recently completed PhD in control or related area of engineering or applied mathematics.

Applications (a motivation letter + CV with a list of publications) and enquiries should be addressed to Leonid Mirkin (mirkin@technion.ac.il).

6.19. PostDoc: University of Southern California, USA
Contributed by: Suraj Chakravarthi Raja, surajcha@usc.edu

THE POSITION: Funded postdoctoral position in Neuromorphic and robotic systems.
THE LOCATION: Brain-Body Dynamics Lab, University of Southern California, Los Angeles, California, USA.

WHO ARE WE:
The Brain-Body Dynamics Lab, led by Prof. Francisco Valero-Cuevas, is dedicated to understanding neuromuscular control and the interaction between neural systems and biomechanical/robotic systems. Our laboratory consists of an interdisciplinary group of graduate and undergraduate students, post-doctoral fellows, clinicians, and faculty in electrical engineering, computer science, mechanical engineering, neuroscience, bioengineering and mathematics. Further information about our laboratory can be found at: http://valerolab.org/

WHO WE ARE LOOKING FOR:
Our laboratory is accepting applications for an NIH-funded post-doctoral fellowship to understand the neuromuscular control of complex tendon-driven systems, and reverse-engineering brain function in collaboration with Profs. Terry Sanger and Jerry Loeb.

We are looking for candidates to implement models of neural circuitry and muscle function for simulation purposes or in real-time to control hardware-in-the loop systems. Successful applicants will have strong back-
grounds in several of the following: control and estimation of nonlinear systems, computational neuroscience, mechatronics, computational methods, robotics, and/or biomechanical modeling.

The successful candidate must have a Ph.D. in engineering, bioengineering or neuroscience; and a strong interest in neuromuscular control. She/he must have experience in at least two of the following: control & estimation of nonlinear or biological systems; computational modeling; FPGA-based acceleration of computational models/algorithms; and/or experimental design of electromechanical systems. Preference will be given to applicants with experience in neuroscience. Expertise in computer languages is essential.

NICE TO HAVE:

Hands-on experience in real-time control system design.
Familiarity with continuous-time, discrete-time, FIR/IIR, transfer-function, state-space representations of dynamic systems.
Understanding of physiology/pathophysiology of the neuromuscular system, spinal reflex circuitry, muscle afferentation, and biomechanics of musculotendinous complex.
Experience in time and frequency-domain analysis of biomedical signals and systems, digital signal processing and system identification.
Experience in programming in MATLAB, Python or R for model simulation and data analysis purposes.
Experience in object oriented programming.
Knowledge of C/C++.
Knowledge of Verilog and experience working with FPGA.
Hands-on experience in biomedical instrumentation and signal conditioning.
Hands-on experience with data acquisition systems.

HOW TO APPLY:

For consideration, please fill out this Form (https://goo.gl/forms/5HC4uGvOmbGaJzKK2) with your name and contact email, and upload your application as one single PDF document (include a cover letter, your full CV, a statement of research interests and career goals, and three references including their name and email addresses).

The position is available immediately, and applications will be received until the position is filled.

The University of Southern California offers a competitive salary and benefits.

6.20. PostDoc/Visiting Professor: Huazhong University of Science & Technology, China

Contributed by: Ye Yuan, ye.yuan@outlook.com

Prof. Ye Yuan (http://yy311.github.io) is looking for a number of postdocs and visiting researchers starting as soon as possible at Huazhong Artificial Intelligence Lab (HAIL), Huazhong University of Science & Technology (HUST), China.

The research project is broadly on the development of deep learning and control theory with application to cyber-physical systems (robotics and power systems).

1. For Postdoc, we offer
 • A competitive salary (at least RMB 212,000 per year, negotiable depending on the qualification);
 • Possibilities for the Postdoc to spend time at world-leading universities (such as UC Berkeley and Caltech) to take specialized courses and work with collaborators there;
 • Experimental platform (Vicon + Crazyflies, GPU cluster, UR3 robot + Kinect, Hardware in the loop Power simulator)
• Full contract for 2 years with the possibility of renewal up to 6 years contingent on performance;
• Possibilities to stay at HUST as a lecturer or an associate professor afterwards.

2. For visiting professors, we offer
• A highly competitive salary depending on the qualification (per month);
• Travel cost and housing

3. Your Profile
• A Ph.D. degree in Control Theory, Mathematics, Computer Science, or a closely related field;
• An excellent background in one of the following areas: system identification, control theory, machine
 learning, neuroscience, robotics.

Interested candidates should send their CV (with names of at least two references) and a cover letter (for
postdoc candidates) describing their specific interest and how their background fits the qualifications to Prof.
Ye Yuan ¡yye@hust.edu.cn¿.

6.21. Research Fellow: Hull University, UK

Contributed by: Ron Patton, r.j.patton@hull.ac.uk

Senior Research Fellowship

Applications are invited from experts in Robust Detection and Isolation (Fault Diagnosis) and Fault Tolerant
Control to apply for a Research Fellow position tenable for up to 5 years at Hull University UK within an
Offshore Wind turbine research project with Siemens and Dong Energy and in partnership with Sheffield and
Durham Universities. The research interest is to (a) Establish Fault Detection and Isolation methods capable
of identifying a variety of faults based on control system performance and integrating these methods with
component based Condition Monitoring methods and (b) the development of robust integrated approaches
to fault tolerant control, including applications to real wind turbine plant systems. Please contact Professor
Ron J Patton.

6.22. Faculty: Umeå University, Sweden

Contributed by: Per Hallberg, per.hallberg@umu.se

Professor in Technology for Autonomous Systems

We would like to draw your attention to our announcement of a professor in technology for autonomous
systems.

We are looking for a person that could complement and strengthen our current related research at the
Department of Applied Physics and Electronics at Umeå University. The closing date is 4th of September,
2017.

Please share this information with your network of colleagues. For full advertisement, follow the link.

6.23. Faculty: University of Bath, UK

Contributed by: Mark Opmeer, m.opmeer@bath.ac.uk

Department of Mathematical Sciences, University of Bath, UK
The Department is inviting applications for a Lectureship (Assistant Professor) in Applied Mathematics to strengthen the activities in its Centre for Doctoral Training in Statistical Applied Mathematics at Bath (SAMBa).

The SAMBa CDT trains graduate students at the interface of Statistics, Applied Mathematics and Stochastics applied to real-world problems, and we invite applications from researchers in any area of mathematics that falls within this definition. We particularly encourage applications from within the fields of control theory, imaging, inverse problems, multi-scale problems, networks and their applications, optimisation, uncertainty quantification, as well as from those working in the application driven areas of mathematical biology, mathematical geosciences, nonlinear mechanics and other interdisciplinary or industrial areas.

The closing date is Monday 16 October 2017.

See the following website for details: https://www.bath.ac.uk/jobs/Vacancy.aspx?ref=SF5138

6.24. Faculty: Polytechnique Montreal, Canada
Contributed by: Jerome Le Ny, jerome.le-ny@polymtl.ca

Position summary
Polytechnique Montreal is one of Canada’s leading engineering schools in terms of its student population and the scope of its research activities with more than 8,000 students and 1,000 employees. Polytechnique Montreal is seeking applicants for a tenure-track faculty position with the Department of Electrical Engineering, at the Assistant or Associate Professor levels. This position falls within the application areas of the Institute for Data Valorization (IVADO), an academic initiative bringing together researchers form HEC Montréal, Polytechnique Montréal and the Université de Montréal. The successful candidate will receive support from IVADO and its members.

The Department of electrical engineering has 31 professors, one senior lecturer, 26 support staff, many post-doctoral researchers, professional researchers and research assistants, 413 undergraduate and 169 graduate students. The department leads internationally-recognized research, in close collaboration with industry, in several core areas such as: automation and systems, biomedical engineering, power systems and networks, microelectronics, telecommunications and microwaves, clustering and recognition, machine learning, big data.

Major responsibilities
The successful candidate will be expected to carry out the basic duties of this position with a dynamic and creative approach. In particular, he/she will:
- take part in teaching and in laboratory activities for undergraduate and graduate courses in electrical engineering;
- supervise and lead graduate students;
- initiate and carry out leading-edge research projects;
- collaborate with research teams within Polytechnique Montreal and other institutions, notably IVADO;
- develop and maintain collaborations with industry.

Area of expertise
The applicant will have to demonstrate a deep understanding of theoretical and technological tools of data science, including deep learning, reinforcement learning, support vector machines, hidden Markov models, etc. and of their application to areas connected to electrical engineering or systems theory. More specifically, applications may fall within, but are not limited to, the following areas:
- Cyberphysical systems, e.g., analysis of massive sensor data for anomaly detection anomalies, system vulnerability and failure characterization; data-driven learning of high performance control schemes; machine based perception in robotics and autonomous systems.
- Electrical networks, e.g., data-based learning of the aggregate behavior of renewable energy sources; anticipation of vulnerable system states and data based learning and identification of corrective actions; disaggregation of loads based on smart meter and substation provided data.
- Communications systems, e.g., machine learning for optimal usage of the frequency spectrum in cognitive radio; learning of Internet traffic to improve network structure and routing algorithms, to increase communication speed and to decrease energy usage (Green Internet); data based speech and signal processing.
- Medical image analysis using artificial intelligence and machine learning algorithms, integration of genomic, proteomic, metabolomic data with clinical image analysis, big data science applied to medical imaging, etc.

Start date: January 2018

Essential qualifications
Applicants must hold a bachelor’s degree in electrical engineering and a doctorate (PhD) in a relevant field of expertise. The successful candidate will be registered on the roll of the Ordre des ingénieurs du Québec (OIQ) as an engineer, or take the necessary measures to be registered on the roll of the OIQ as an engineer before applying for tenure. Relevant industry experience is an asset. The teaching language is French.

Conditions of employment
This faculty position is tenure-track. Salary and benefits will be set in accordance with the collective agreement between Polytechnique Montréal and its professors.

Applications
Candidates should submit an application file that consists of a curriculum vitae, a statement of teaching goals and research priorities, records of teaching effectiveness, official records of diplomas, and the names of three references, several examples of work relevant to the position and examples of recent contributions.

Applications must be sent by September 15th, 2017, at 5 PM, to the following address:
Yves Goussard, Professor and Chairman
Department of Electrical Engineering
École Polytechnique
Case postale 6079, succursale Centre-ville
Montréal (Québec) H3C 3A7
CANADA
E-mail: dge.sec-direction@polymtl.ca

This posting may be extended past September 15th, 2017. Examination of applications will begin as soon as possible and continue until the position is filled. Only candidates selected for an interview will be contacted.

6.25. Faculty: Universidad Técnica Federico Santa María, Chile
Contributed by: Juan I. Yuz, juan.yuz@usm.cl

Three Faculty Positions at the Department of Electronic Engineering, Universidad Técnica Federico Santa María (UTFSM), Valparaíso, Chile

This call is aimed at filling 3 (three) full-time faculty positions in the fields of Telecommunications and Signal Processing (Code 17-01-65), Automatic Control or Telecommunications (Code 17-01-66) and Telematics (Code 17-01-67).
About UTFSM:
- Our university is currently ranked top in Latin America in terms of citations at the Latin American Times Higher Education (THE) ranking. Also, UTFSM has been ranked 1 in Latin America in research impact factor by SIR Iberoamerica, Scimago. In Electrical and Electronic Engineering, UTFSM was ranked number one in Latin America at the Shanghai Academic Ranking of World Universities for years 2016 and 2017, and in the range 101 to 150 worldwide.

Benefits:
- UTFSM offers a starting salary between 47,000 and 61,000 USD per year, depending on initial academic evaluation. Additional benefits include supplemental health insurance and incentives for publications in ISI indexed journals. Additional economic incentives are possible through research grants funded by CONICYT-Chile.

Job Responsibilities:
- The selected candidates are expected to be a competent and highly motivated academic, who will contribute to teaching in undergraduate and graduate (Master and Doctorate) programs and to exhibit research and innovation capabilities. The willingness of the candidate to perform theoretical and experimental teaching and experience in projects of multidisciplinary basic and applied research is particularly encouraged.
- A performance agreement will be established for an interim period of two years, establishing teaching and research goals to be achieved in that time frame. If necessary, the interim agreement will also provide a Spanish language training program, to achieve language proficiency for teaching purposes. Fulfilling the agreement goals will enable the candidate to participate on tenure track.

1. Telecommunications and Signal Processing 1 academic position, (Code 17-01-65): Candidates with know-how in Telecommunications and Signal Processing, preferably those with expertise in antenna design, propagation and modeling of wireless channels will be considered.

2. Automatic Control or Telecommunications 1 academic position, (Code 17-01-66): Candidates with expertise in one (or more) of the following areas: modeling and process control, advanced control system design, nonlinear control, system identification, and control over networks, telecommunications, signal processing or other related areas, with potential for application in industry, will be considered.

3. Telematics, 1 academic position, (Code 17-01-67): Candidates with specialization in one of the following areas is highly desirable: wireless communications applications (layers ISO/OSI 2-7), web technology, or network administration, however, other Information Technology and Telecommunications occupational areas will also be considered.

Application requirements:
- To be in possession of a doctoral degree or in the final stages of receiving it.
- The trajectory and expertise consistent with teaching and research duties in the field.
- To have teaching abilities and to be willing to teach at undergraduate level (theoretical and experimental).
- To be willing to participate in training programs aimed at the use of modern educational methodologies and also in the planning of the engineering education curriculum.
- To exhibit demonstrable results in the creation of knowledge (ISI journal publication, international conferences or patents).
- Writing and speaking proficiency in English and Spanish. Applicants not fluent in Spanish should show willingness to acquire within one-year sufficient proficiency to be able to teach and interact with students.

Documentation that must be included in the application
- Curriculum Vitae.
- A personal proposal for academic development in research and teaching.
- Undergraduate and graduate grade transcripts.
- Certificates of diplomas and degrees.
- Contact information of two senior academics who are willing to provide academic and personal references. One of the referees should be the Ph.D. thesis advisor. These references will be requested directly by the Head of the Department of Electronic Engineering, USM.

Selection Procedure
- The Department of Electronic Engineering will select a shortlist for each position, for interviews with a Selection Committee. The candidates in the shortlist will be asked to present a public lecture on a research and also on a teaching topic (via video-conference if a visit to UTFSM cannot be arranged).

Submission of Applications and Important Dates
- Applications should be sent in electronic format to: concursos.elo@usm.cl, sending a copy to: postulaciones.rrhh@usm.cl. The subject of the message should include the position code.
- Application Deadline: September 30th, 2017
- Preliminary Selection (shortlist) will be informed by: October 30th, 2017
- The selected candidate are expected to join UTFSM in March, 2018.

Additional information
- Activities of the Department of Electronic Engineering can be found at http://www.electronica.usm.cl/en/
- General information about UTFSM can be found at http://usm.cl/en/
- Further questions and enquiries: concursos.elo@usm.cl

6.26. Faculty: Naval Postgraduate School, USA
Contributed by: Mark Karpenko, mkarpenk@nps.edu

Faculty Associate - Research
Non Tenure Track
Control and Optimization Laboratories
Department of Mechanical and Aerospace Engineering
Graduate School of Engineering and Applied Sciences
Naval Postgraduate School, Monterey, CA

Description:
The Control and Optimization Laboratories (COL) in the Department of Mechanical and Aerospace Engineering at the Naval Postgraduate School (NPS) invites applications for the position of Faculty Associate - Research in Computational Optimal Control as a researcher and student advisor in trajectory optimization and control systems architecture design and implementation for mechanical and aerospace systems.

We are seeking candidates with expertise in the mathematics of optimal control theory and application of optimal control theory and related concepts to challenging problems in the guidance and control of highly-nonlinear mechanical and aerospace systems. Examples include time-optimal and/or energy-optimal attitude control for spacecraft reorientation maneuverers and trajectory optimization for autonomous systems such as aerial and ground vehicles or other robotic systems.

Suitable candidates must have experience in the application of Pontryagin’s Minimum Principle to the solution of nonlinear optimal control problems under a multitude of practical state, control and mixed state-control constraints, have familiarity with the design and implementation of classical inner-loop control systems/architectures and have a working knowledge of the latest software tools for control system development and computational optimal control. Further, we seek candidates with skills and desire to perform
basic laboratory management tasks and to coordinate research and development activities across a variety of concurrent projects.

A letter of application including resume and two letters of reference should arrive by September 29, 2017. Application packages should be sent to:

Dr. Mark Karpenko,
Research Associate Professor and
Associate Director, Control and Optimization Laboratories
Department of Mechanical and Aerospace Engineering
Naval Postgraduate School
Monterey, CA 93943
mkarpenk@nps.edu

Additional information about this position can be found at:
http://main.hercjobs.org/jobs/10226865/faculty-associate-research/

6.27. Research Scientist: Intelligent Fusion Technology Inc., USA
Contributed by: Dan Shen, dshen@intfusiontech.com

Open Position: Research Scientist: System Controls
Intelligent Fusion Technology, Inc – Germantown, MD

Company Overview:
Intelligent Fusion Technology (IFT) is a Research and Development (R&D) company focusing on information fusion technologies from basic research to industry transition and product development and support. IFT is located in Germantown, Maryland. We are looking for talented developers majoring in electrical engineering or related fields to join our multidisciplinary team as full-time employees or interns. In particular, we are looking for candidates having direct experience in system control design and implementation.

Job Summary:
Design and implement control systems for various dynamic applications such as robotic platforms, space communications, UAVs, and cognitive radios.

Electrical and Computer Engineering preferred.
Intern or full time job.
We sponsor H1B and Green card application.

6.28. Research Scientist: Bosch Center for Artificial Intelligence, Germany
Contributed by: Mathias Bürger, mathias.buerger@de.bosch.com

Research Scientist Positions at the Bosch Center for Artificial Intelligence
The Bosch Center for Artificial Intelligence is looking for outstanding research scientist to support our growing team.

The Bosch Center for Artificial Intelligence was founded in early 2017 with the aim to build cutting-edge Artificial Intelligence (AI) technologies. We design and implement AI technology for smart, connected and
learning products across all Bosch portfolios. We offer a variety of opportunities for successful employment and development.

Your contribution to something big
- Development and implementation of state of the art reinforcement (RL) and planning algorithms for behavior planning and control of autonomous systems
- Original research, theoretical investigations, and publications at top conferences and journals related to Machine Learning, Artificial Intelligence, Control and Robotics
- Possible research domains include reinforcement learning for multi-agent systems, learning with temporal logic constraints, or probabilistic planning and control
- Close contact to the scientific community, scouting and assessment of new approaches, publications on top conferences and journals
- Technical discussions and creation of new ideas within the existing Machine Learning research team
- Supervision of Master and PhD students

What distinguishes you:
- PhD in Machine Learning, Artificial Intelligence or Control and excellent publication record
- Proven programming skills, in particular C++, Python and Matlab
- Experience in development and implementation of state-of-the-art RL technologies is a plus
- Experience with autonomous systems and robotics is a plus
- Broad knowledge of machine learning and decision making algorithms and principles
- Strong team player, motivation and ability to define personal research roadmap

Detailed descriptions of the positions are available:
https://your.bosch-career.com/de/web/de/de/bewerben/jobsearch/-/cui/job/ZRB_UNREG_SEARCH/EN/567D863A01021EE7A0E8FE4C3A275042
https://your.bosch-career.com/de/web/de/de/bewerben/jobsearch/-/cui/job/ZRB_UNREG_SEARCH/EN/567D863A01021ED7A0E75B297FDB4BA9
Contact: Mathias Bürger (mathias.buerger@de.bosch.com)

6.29. Senior Systems Engineer: NIO, USA
Contributed by: Michael Harris, michael.harris@nio.io

Sr. Autonomous Systems Engineer – Path/Motion Planning and Decision Making
(Please contact Michael Harris - michael.harris@nio.io)

Team charter:
The Advanced Technologies and Autonomy team is responsible for delivering highly available, high quality systems to enable NIO's Autonomous driving vehicles. Our mission is to provide the next generation of hardware, software and algorithmic solutions. This includes but not limited to sensing, compute, storage as well as vehicle controls and safety system compute.

What the team works on:
- Autonomy hardware and software architecture
- Design, development, integration, and test of autonomous compute and sensing hardware
- Mass storage and Event Data Recorders
- Vehicle and Safety Controller HW and related functions
- Environment and Sensor modeling and simulation
- Autonomy AI and Controls
- Autonomy R&D Tools
- Autonomy compute and sensing HW and SW redundancy
• Sensing, GPS and IMU hardware, software, and integration
• Autonomy compute communication (sensing, compute, and controller inter-ECU communication)

You will be part of a team working towards NIO’s autonomous vehicle vision. You will be architecting and contributing to system that processes input from a variety of vehicle sensors, evaluates possible vehicle strategies/trajectories, and automates the safe control of the vehicle.

Responsibilities:
- Excellent knowledge and expertise on Markov Decision Processes (POMDP, MDP, Markov Chains, ... etc.)
- Working knowledge and practical application of robotic path planning, motion planning and decision making algorithms (A*, RRT, CC-RRT etc..)
- Conceptualize, prototype, test, and launch cutting-edge autonomous driving features
- Knowledge of vehicle modeling and dynamics, motion prediction, and kinematics
- Knowledge of control theory and applications
- Knowledge of localization algorithms (SLAM, probabilistic filters), vehicle state estimation, dead reckoning
- A practical, creative, hands-on approach to apply the theory required to solve autonomous driving related problems
- Passion for product excellence and quality. Strong desire to create high quality product, working as an integral part of a highly capable team
- Desire to work in a fast-paced, production oriented environment
- Collaborate with other teams to ensure a smooth, robust implementation
- Self-driven/enthusiastic/motivated to solve challenging engineering problems

Qualifications
MS with at least 2 years of work experience or PhD in relevant fields. Major in computer science, applied mathematics, aerospace, mechanical, robotics, or related field.

Preferred Qualifications
Hands-on experience in robotic and/or autonomous vehicle system design and implementation Proficient in high level design and analysis Experience in low level software implementation Knowledge of ROS Experience working in an automotive, aerospace, etc. environments Experience working in a larger team Experience with C/C++ software development

About NIO (NEXTEV USA, Inc d/b/a NIO)
The automotive industry is on the cusp of a profound change. Our goal is to lead the way into the future with smart, electric and autonomous vehicles. Our aspiration is make life better for millions of people around the world. Our vision is to give people their time back to be everything they want to be. We are confident that we will be the first to deliver the next generation experiences in the car of the future. We believe that your car will be the smartest device you own and we are designing for the best user experience from the wheels up. Want to be a part of this? Join us!

NIO is committed to a policy of equal employment opportunity. We recruit, employ, train, compensate, and promote without regard to race, color, age, sex, ancestry, marital status, religion, national origin, disability, sexual orientation, veteran status, present or past history of mental disability, genetic information or any other classification protected by state or federal law.

Online application:
https://www.linkedin.com/jobs/cap/view/389873070/?pathWildcard=389873070

Back to the contents