
Design of feedback systems using slow computing is particularly challenging because of

the performance limitations associated with computational delays that are comparable to

the underlying plant dynamics. Highly parallel, non-deterministic architectures are likely

to be needed to achieve what is normally accomplished through the tightly synchronized,

serial interconnections of sensing, filtering, estimation, planning, regulation, and actuation

that are common in traditional control systems. Unfortunately, current techniques for

systematic design of control systems assume a mostly serial processing architecture

and techniques that make use of parallel architectures (such as neural networks) do not

provide sufficiently systematic design methods. New research is needed to develop the

architectures, theory, and tools required to design controllers where computational delay

does not allow current techniques to be used.

Context

Current approaches to the design of software-controlled systems make use of a

combination of abstractions and design techniques that are often implicitly based

on the assumption that significant computational capacity is available to implement

computations and communications. This is a good assumption for many application

areas where substantial amounts of computing can be embedded within a physical

system to control the dynamical behavior of the underlying process. As a consequence,

many of the approaches that are available for designing complex, “cyberphysical”

systems rely on large amounts of computing to achieve complex and robust behavior.

As a complementary approach, consider instead the control system for a fruit fly,

depicted in the figure below. This system uses approximately 300,000 neurons with

typical time constants in the range of 1 – 100 msec (10 – 1000 Hz) and is approximately the

size of a sesame seed. Yet it is able to take off, land, avoid obstacles, find food and mate

(among other things), often with performance that is beyond what we can do in engineered

systems at this size scale. As just two specific instances, the control system of a fly is

capable of executing saccades (rapid changes in direction) that occur at angular rates of

up to 1800 deg/sec and it can fly in wind gusts that are up to twice its flight speed in air.

Current techniques for the design of software-

enabled control systems rely on the existence

of high performance sensing, actuation and

computational devices that can be embedded

within a physical system at modest cost. Driven

by Moore’s law, the success of this paradigm can

be seen through the broad usage of feedback

controllers in modern application areas. The

goal of this challenge lies at the other end of

the computational spectrum: Can we develop

new principles and tools for the design of closed

loop control systems using highly distributed,

but slow, computational elements?

The motivation for control design using

slow computing is to develop control

system architectures for applications

where computational power is extremely

limited. One important class of such systems

is that for which the energy usage of the

system must remain small, either due to the

source of power available (e.g., batteries or

solar cells) or the physical size of the device

(e.g., microscale and nanoscale robots). A

longer term application area is the design

of control systems using novel computing

substrates, such as biological circuits. A critical

feature is the fact that the speed of the basic

computing elements is similar to the underlying

dynamics, leading to tight coupling between

dynamics and computing.

Contributor: Richard Murray, California Institute of Technology, USA

High-Performance Control with Slow Computing

(a) Sensory
Motor System

Ref

Wind

(b) Wing Aero-
dynamics

(c) Body
Dynamics

(d) Drag Aero-
Dynamics

(e) Vision
System

- 1

Control System for a Fruitfly

Grand Challenges
for CoNTrol

From: The Impact of Control Technology, T. Samad and A.M. Annaswamy (eds.), 2011. Available at www.ieeecss.org.

Challenge

The goal of this challenge is to develop the

fundamental insights and tools that will

allow us to design control systems that can

perform the tasks of modern high-speed

control systems but using an architecture that

is compatible with the speed of computation

used by an insect. The development of such

an architecture has the possibility of providing

new ways of integrating control into systems

where large amounts of fast computation are

not easily available, because of limitations on

power, physical size, or choice of computing

substrate. It is likely that many of the tools

and insights required to design such systems

will prove to be central to the design of

other classes of systems in which the effects

of time delay, asynchronous execution of

parallel computations, and highly complex

interconnections play a defining role.

A candidate architecture for the implementation of such a system is shown below.
The system consists of a set of agents that are interconnected through a network
(the portion of the figure to the left of the network illustrates the architecture within
an agent). Each individual agent has a highly structured inner loop, which interacts
with a guarded command language (GCl) protocol engine that triggers rules to change
the discrete state of the system. The “inner loop” control system makes use of an
interconnection matrix l, a set of asynchronous delays (represented by the blocks
labeled τ) and nonlinear elements N(). Internal feedback between the nonlinear block
and the interconnection block allows a general set of dynamical systems to be formed
from this simple structure. The protocol-based feedback system modifies the inner loop
dynamics, but also controls communications between other agents, using a packet-
based communications network. Multiple agents interact with each other across the
communications network, using packet-based communication protocols. This network
introduces another layer of variable time-delays and asynchronous behavior, enabling
complex behaviors by the multi-agent control system.

The complexity of the architecture and of the resulting behavioral space will require

the development of formal tools for specification, design and verification.

Sensing
Array Real-Time

Agent

Real-Time
Agent

Real-Time
Agent

Network

A
sy

n
ch

ro
n

o
u

s
C

o
nt

ro
l

Physical
System

GCl
Engine

Actua-
tion

l
(interconnection)

N()
(nonlinearity)

