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Drift counteraction optimal control

« Large disturbances and/or dynamics

] . — ) 9 ) E U
causing drift Tip1 = [ (T, up, we), wy
o State constraints

e Control constraints / constrained resources
limiting ability to counteract drift

« Eventual constraint violation is inevitable

« Goal: Maximize time (or yield) till constraint Lt

violation occurs
* No set-points, only constraints! T = 7(2o, {ut}, {we })
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Deterministic DCOC

Nonlinear discrete-time model: x;11 = f(x¢,us), 9 € G
Control input: u; € U

Admissible sequence of control inputs: {u:} = {uog, u1,...} € Useq
Set of state constraints: G

First exit-time: 7(xg,{us}) =inf{t € Z, : x; & G}
Instantantaneus reward: g(z,u) > 0

DCOC problem
Maximize yield before constraint violation:

T(xo,{us})—1 x’r(zco {us})
Jaofud) = > glnu) - may
—0 {ut}EUseq

Special case: g =1 = first exit time maximization
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GEO satellite station keeping i

4000 kg satellite, six on/off thrusters (0.2 N each)
Perturbations: luni-solar gravity, solar radiation, .Js, - - -
Nonlinear model with eight states

with DCOC
Position in 2- and 3-directions of Hill frame after 0.00 days X 7 e
6 | Station keeping requirements:
.l ,.
2 | G = (x,m) ERGXRZ()Z |T1’,‘T2’,’T3| < 7.359 km,
| 1, |v2] < 0.55 m/sec, |vs| < 0.75 m/sec,
al
5 m 2 Mupmin
sl
s s 4 2 o0 2 4 6 o
r, (km)

1 No control = position constraints violated in less than a day
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LEO satellite orbit decay reduction

3U Cube Sat, dry mass: 4 kg

On/off thruster in orbital track direction, 40 g fuel
Perturbations: Air drag, Jo

5 state nonlinear model: x; = r, 29 = 0,25 = 0,24 = 0,25 = m

Orbit maintenance requirements:
G:{$ER5: 280§7"—Re§320km,m24kg}

Solution': Drift counteraction optimal control based on Approximate Dynamic Programming and Kriging

altitude spacecraft mass control input
320 | | | 4.04 ' | = 1 -
> -
<4.02 <05
E -
4 . . J 0 .
0 10 20 30 0 10 20 30
time (days) time (days) time (days)

INo control = altitude constraints violated in ~ 3 hours
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Stochastic DCOC

Nonlinear discrete-time model: x;11 = f(xs, ug, wy), g € G

e Random measured disturbance: w;
e Control policy: u; = m(xs, w) € U
e First exit time: 7(xg, wo, ) = inf{t € Z, : =, & G}

Instantaneous reward: ¢g(x,u) > 0

Maximize expected reward before constraint violation:

(
’T(il?(),wo,ﬂ')—l )

£ Z 9(37taut)|ﬂ?o,wo,7r > — max
t=0 mell

\ /
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Glider range maximization
Maximize expected range subject to altitude and flight time constraints
Optimal decision policy for time to spend in a thermal and speed to fly outside thermal

Stochastic model for strengths of thermals and updrafts

Related problem: Maximize surveillance time of a moving ground vehicle

with DCOC

States, Max. Distance = 33.6 km

Controls
6000, T T T T T T 100 . .
=

— =
= 4000} E .-
® = H
3 g SO - e e
E 2000F t% -——-”“-”_$ ® -

LELET ﬁ

- . - g g ™ : : : . . .
GD 50 100 150 200 250 300 350 GO 50 100 150 200 250 300 350
Segment Number Segment Number
_“1000 T T T T T T ?600
w =
@ 30001 E
£ = 400} -
5 2000 2
w ™ -
& 1000} £ 200
- 2
L L L 1 1 '_ e
OU 50 100 150 200 250 300 350 CU 50 100 150 200 250 300 350
Segment Number Segment Number

Menezes, Shah and K. (2018)
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Related work

There has been much work on exit-time/optimal stopping problems for both
stochastic and deterministic continuous-time systems

/Lions (1983), Fleming and Soner (2006), Barles and Rouy (1998), Bayraktar et. al. (2010), A
Gorodetsky et al. (2015), Buchdahn and Nie (2016), Kushner and Dupuis (2013), Barles
and Perthane (1998), Blanc (1997), Cannarsa et al. (2000), Munos and Moore (2002),
kRungger and Stursberg (2011), ... )

« There has been less work on discrete-time systems

* Much of previous work relied on different assumptions: discounted problems,
minimizing non-negative cost, instead of maximizing non-negative cost, etc.

« Qur focus is on computational improvements to dynamic programming, MPC
formulations, and applications
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Deterministic DCOC

Nonlinear discrete-time model: x;11 = f(x¢,us), 9 € G
Control input: u; € U

Admissible sequence of control inputs: {u:} = {uog, u1,...} € Useq
Set of state constraints: G

First exit-time: 7(xg,{us}) =inf{t € Z, : x; & G}
Instantantaneus reward: g(z,u) > 0

DCOC problem
Maximize yield before constraint violation:

T(xo,{us})—1 x’r(zco {us})
Jaofud) = > glnu) - may
—0 {ut}EUseq

Special case: g =1 = first exit time maximization
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Exit time boundness assumption

Assumption 1: The first exit time is bounded from above:

AT € Z~o : T(wo,{us}) < T for all zg € G and {u;} € Use,

Suppose Assumption 1 holds and ¢ = 1 (time maximization problem). Then a
solution to the DCOC problem exists.

Suppose Assumption 1 holds, U consists of a finite number of values and g(z, u)
is upper bounded on G x U. Then a solution to the DCOC problem exists.

If Assumption 1 holds, G is compact, f is continuous and g is upper semicon-
tinuous, then 7(xg, {us}), J(xo, {us}) are upper semicontinuous w.r.t x
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Dynamic programming solution

Dynamic Programming
Define L™V (z) =V(z) — V(f(z,n(x))

Find V and 7* such that

Value Iterations

Va1 () = Vi(x) + ken(x), if z € G,
Vot1(x) =0, ifz ¢ G,

en(2) = max19(z,u) + Vu(f(z,v))} - Val2)

L™ V(z) = g(z, 7 (z)), ifz € G,
L™V (z) 2 g(z,7(2)), fx € G, m#7,
V(z)=0, ifx ¢ G,

e Convergence for constant k € (0, 2)

Vi(z) = V(z) en(z) — 0
0 I X[+1:1+X|+;Jl. I T~ "~;“. otX
4 u e U=[-0.5,0.5], e V.x 1 —o—&lx
_L\."‘ﬁ x: £ G =[-10,10], Yol e|:)

351 b Ve |
j_LH g=1 v, (x

uelU

7" (x) € IT*(z) = argmax{g(z,u) + V(f(x

e 150
30 —o—o—s—o _"u —o—Vpe(x)
=V, ,(X),
25, 39 4
,u))} o
20 ‘
-
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Computations

e In theory, £k = 1 (conventional VI) maximizes convergence rate

e In a numerical setting, £ = 1 may not be optimal

DCOC for LEO CubeSat

o x = (r,v.,0,v9,m) € R°, u € {0, F;} C R

e DP based on grid/mesh of size gy X go X 1 X go X qq

e ADP based on Kriging interpolation of 12 4 nj,s points

6000 __#iterations . k=1, DP k=1.8, ADP
ADP-Krigi =275
o e s o 30 | 50 | 70 ns 250 | 300 | 350
4000 | > DP 490
= t, (days) 26 | 23.7 | 31.1 t, (days) 309 | 31 | 314
2000 | tcomp (hours) | 0.13 | 1.4 | 7.85 tecomp (hours) | 0.02 | 0.04 | 0.06

K tr - exit time, teomp - computing time



IR BN EREHRIE

Adaptive proportional value iteration

Error:

en(w) = max{Va(f (2, ) + g(x, w)} = Vo (2)

Adaptive proportional value iteration:

Va1 () = Vo(x) + kn(x)en(x), ifx € G
knt1(x) = kp(x) 4+ dep(x)

Visi(z) =0, ifz ¢ G

# of iterations
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GEO satellite station keeping

12000

10000 ¢

8000 ¢

6000 ¢

4000 ¢

2000 1

¢

_\Conventional Value lterations

’

0 0.005 0.01
learning rate ¢
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Modified value iteration algorithm

Exit time maximization problem, g = 1

Specify base control policy (here zero control): mg(x) =0 for all z € G

Base trajectory corresponding to my:

So(zo) = {zo, 21 = f(20,0),22 = f(21,0),"* , Tr(zy.7o)-1 = S (Tr(zo.70)—2,0) }
Time instant corresponding to x’ € Sy(xg):

to(xo) =inf{t € Zy : 241 =2 € So(xo)}

Modified value iterations, V,, — V pointwise

Vi(z) = max  {V,_1(f(z",u) +to(v)}, ifx € G
(x*,u)ESy(x)xU (g _ 1)

Volx)=0,ifx ¢ G

More accurate, effect of interpolation errors is reduced.
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GEO North-South (out of orbital plane) station keeping

Discretizations

G C G:

e Nominal grid: 31 million points
e Dense grid: 1.7 billion points

Comp. time _
Case (C, desktop pc) |T(Xo, ")
new (nominal) 31 min 116,650
(Vi (nominal) | _ _16min__ | 90967
e ense)_ | 165 Tiours | 116596,
.Vi(dense) | 18hours | 112,356
“new” = modified, “VI” = conventional

fuel

time (days)
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Handling larger dimensional problems

How to handle larger dimensional problems?

Model Predictive Control?

What are suitable MPC formulations?
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Model Predictive Control (MPC) N-1
F(zn — ze(r +2sz—ruk
k=0
w(t) e W v min

T(t)i- _____________________ i _____ : Z(t) subject to

: : t E Y .’L'O:.CC(t), ’I“:T'(t),

: T :—)y( ) 2k = g(Tr),

| | e

!_ ___________________________ I yk_[h(mk) ]EY,

zn € X¢(r)C X

u(t) = uprpc(x(t), r(t) = uf

MPC is a feedback law defined by the first element of the optimal control
sequence obtained as a solution to a constrained optimal control problem
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Nonlinear and linear programming approaches

Basic setting:

Nonlinear discrete-time model: x;11 = fi(xs, uz), o € Go

Control constraints: wu; € U,
Maximizing first exit-time: 7(xo,{u:}) =inf{t € Z, : z; € Gy} — max
Assumption: GGy and U; are polyhedral sets, can depend on time ¢

Gy = {lL’ c R™ : CS’tCC < bs,t}
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Mixed integer nonlinear program (MINLP)

Assumption: G; = {x € R" : C5 & < bg;}

N
min d; s.t.
{ut}n{élea"'a(sN} Z

t=T11

Ter1 = fe(@g, u)

0t—1 < Oy

6o € {0,1} CZ, t=m1p,..., N
Corxe <bgy, t=1,...,m —1

up € Uy

CS’tCl?t < bs,t -+ ].M(St, t = Tlby «--

N: time horizon

M: large scalar

d;: indicator variable for z; ¢ Gy

Tib: lower bound on optimal first exit-time

Theorem: The MINLP gives solution with
the same exit time as the solution to the

DCOC problem (if exists), if M and N
are sufficiently large.
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NLP formulation

Approximate solution: replace binary variables 0; with real-valued variables e;
— NLP without integer variables (suboptimal solution)

N N: time horizon
min E et s.t. e¢: indicator variable for x; ¢ Gy

{Ut},{ET ,...,€N} L
P t=mw Tip: lower bound on optimal first exit-time
Tip1 = fe(@e, ur)

U< é1s& NLP solution is close to optimal solution (MINLP so-
Csiwy <bsy, t=1,...,m, —1 lution) if N and 73, are close to optimal first exit-time?!.
Csirxe <bst+1leg, t=1p,..., N =3

ur € Uy

1 Weighted versions may recover an exact solution




DRIFT COUNTERACTION
M | MICHIGAN ENGINEERING ALROSPACE SYSTEMS
21

UNIVERSITY OF MICHIGAN

Reduction to LP

e Linear model approximation: :+1 = Az + Biuy + d;
* MILP (similar to MINLP) solves linear DCOC problem
« Approximate solution with LP

N lterative Procedure: Increase
min Z e, s.t. horizon N until constraint violation

{utf{er, N}

t: ..
Tib Tib < Set initial lower bound

N < 71ip, + Nadd; Nada € Z4
{us}, {en,,---, N} < solution of LP
T+ max{t < N:g =0} +1
if EN — 0 then
Tib <— T; g0 to Step 2
end if

ri41 = Ayry + Brug + dy
0<e 1< ¢

Corxy <bgy, t=1,...,1p —1
Csrxt <bst+1leg, t=7p,..., N
up € Uy
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MPC strategy

At each tg € Z>, compute linear DCOC solution {uy} = {u} ,u; _1,...}
based on x4, with iterative procedure and apply u; to system.

Past Future

' A >

Prediction horizon N ‘

_____ — Linear model prediction

z
<
o ——1 |
= —|_|_I
c
o
Oy
|
apply u;, to i S— 1
- ~ | r- Lo .
nonlinear system ™ ju L b Control sequence {u;}
| | | | | | | | | | | | | |
>
1 1 1 1 1 1 1
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Recovery control

Avoid premature constraint violation due to unmodelled effects
e Tighten constraints for LP solution
e Employ recovery controller (when tightened constraints are violated), also LP-based

Recover]%/ controller LP
(@ fuh (e} ; o
subject to
Tir1 = Ay + Byug +dy, x0 & Go
0<e
és,txt < bst + ey
uy € Uy

LP-based MPC simulated on nonlinear model, including recovery controller
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Spacecraft pointing control with a single reaction wheel

e Nonlinear model, 7 states, 1 control. Reaction wheel spin axis g; = %(1, 1, 1)t
e Attitude drift due to nonzero angular momentum and solar radiation pressure
e Linear model approximation (for MPC). Sampling time At = 2 sec

RW-1 spin rate

-3
2_X_19r___ R — < 10f :‘fJ
g 0 —MPC-Discrete-Time || (\‘ﬁ 100 q s ) -
= —NLP-Discrete-Time = :!_,['j:
__________________ MPC-Continuous-Time N gol L . ‘
2, e : = 0 0.5 1 1.5
, 1073 Pitch time (min)
Sof \
%_2 _____________________________________ e Method — Sim. Model Exit-Time (min) Computation Time, MATLAB (sec)
0020 S "o MPC - Discrete-Time 1.5 0.01 (average), 0.08 (worst-case)
5 f,ff"”’; NLP - Discrete-Time 1.5 50
£ 0 — f
T MPC - Continuous-Time 1.46 0.01 (average), 0.08 (worst-case)
0.02 s e
0 0.5 1 1.5

time (min)
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Stochastic DCOC based on linear models

Linear discrete-time model: z;1 = Az + Brus + wy, 29 € Gy

Random disturbance w; € W = {w" : i € I}, modeled by a Markov Chain with
a finite number of states and transition probabilities P(w;4q1 = w’|w; = w*) € [0, 1]

Control policy: uy = m(xy, wy, t) € Uy

First exit-time: 7(zg,wo,7) = inf{t € Z, : x; & G4} (random, depends on {w;})

Expected first exit-time: 7(xg,wq,7) = E{7(xq, wo, 7)}

DCOC problem:

max T (20, wo, T)

(IT is the set of admissible control policies)
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Solution existence

Assumption 1: There exists 7> 0 and w € W s.t.

e W overpowers any control policy m € 11, i.e., )
ri11 = Axy + Byw(xe, w, t) + w violates constraints in at most 7" steps

e Py (w|w) > 0 and w is accessible from each w € W.

Theorem: If Assumption 1 holds, 7(x,w,7) is bounded from above.

Theorem: If Assumption 1 holds and Uy is finite for all £ € Z>(, a solution to
the DCOC problem exists.
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DP solution

Define f(x,u,w) = Az + Bu+ w (time-invariant case)

Vi, wou) = Y [V(f(z,u,w),w)Pw|w)], L™V (z,w) =V(z,w) = VF(z,w,7(z,w))

wieW
Dynamic Programming Value Iterations
Find V and 7* such that Vir1(z,w) = Vi (z,w) + key(z,w), ifz € G,

- Vit1(z,w) =0, ifz ¢ G,
L™ V(x,w)=1, ifx € G,

L"V(e,w) > 1, itz € G, m#7" en(@, w) = max {1 ! V”+(”3’w’“)} ~ V)
V(z,w)=0, ifx ¢ G,

e Convergence for constant k € (0, 2)

e Adaptive proportional value iterations - faster

7 (z,w) € II"(z, w) = arg max{V " (z,u, w)} e Adaptive proportional value iterations with damping
uelU

e Approximate DP (Neural networks, Kriging)
e Higher order problems — SMPC
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Scenario tree

Scenario tree Ty = {no, 71, ..., N} encodes |Sy| > 1 disturbance scenarios
{we}" =A{w 1 t € Zpyy gy} = (W, ..., wPrePre(n)) o pre(n). w'),

for each leaf node n € Sy.

For example, {w; }"° = (w0, w™, w" w")
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Scenario tree

e With each n € Ty, associate z", w", and ",
where £ = xg, w"° = wy, and ¢t = 0 for root node.

e For each node n € Ty, assign a control u".
e Satisty dynamics: 2" = Atpre(n)azpre(”) + Btpre(n)upre(”) + qPre(n)

e Probability of reaching node n € 7y, starting from root node 7ny:
p = pPrelm) Py, (w|wPrem) € [0, 1], where p = 1.

e Control inputs of tree Tn: Uy ={u" € Um : n € Ty \ Sy}

e Control policy defined by given Upn: my,,
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Scenario tree generation

Tn < {no}; C« 0; p 1
£ < 0; 20 <= x0; WO < wy

v 0 Generate most likely scenarios for a
while 1 < N do ]
for j € {1,2,...,|W|} do specified number of tree nodes N
succ(n;) . .
wh e wl (wi e W)
succ(n;)
t'i — "+ 1
succ(n;) .
end for

C < C Usucc(n;)
Ni+1  argmax, . p" (pick any maximizer)
Tn < Tn U{nit1}
C < C\{mit1}
11+ 1
end while




DRIFT COUNTERACTION

OPTIMAL CONTROL FOR
VAt N E N IREERINS AEROSPACE SYSTEMS
31

Scenario tree — based optimization

e First exit-time corresponding to {w;}", n € Sn:
Ty (@, mn) = min{min{t € Zyg ) : v+ ¢ G¢} U{t" + 1}}.

e Average first exit-time for Tn and control policy mn € II:

w(z,7n) = > Tn(z,7N)p".
neESN

e Maximize average first exit-time of tree Ty max ™~ (z, 7N )
TN €

Theorem: The solution to problem™ is arbitrarily close (in terms of 7 perfor-
mance) to the DCOC solution (if exists) for sufficiently large V.
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MILP formulation

Assumption: G; and U; are polyhedral sets and Gy = {z € R" : Cyz < b} for
all t € Z>y.

min ) y 85 st
uNa{énoa"-aénN} < g
neTn €K’

2" = Appre 2P+ Bipreim uP™ 4 P for all n € Ty \ {10}
5" > 6P for all n e Tw \ {no}

60" € 40,1} C Z, for all n € Ty

Cinaxm < b + 1M, for all n € Ty,

Theorem: If M is sufficiently large, the control policy my: defined by the
MILP solution U, maximizes the average first exit-time of tree Tx.

1 IC; = set of leaf nodes whose associated disturbance scenarios contain node n € Ty
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MILP formulation

Theorem: If M is sufficiently large, the control policy myx defined by the
MILP solution U3, is arbitrarily close (in terms of 7 performance) to a solution
of the DCOC problem (if exists) for sufficiently large N.
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Stochastic MPC (SMPC) implementation

Feedback to compensate for incomplete trees and/or unmodeled effects

e At each time instant {9 € Z>o:

— generate tree Ty based on zy, and wy,

— compute MILP solution U}, for Ty

e SMPC pOlicy: WSMPC,N(CUth ’wto,to) =u' Z/{;;

Theorem: If M is sufficiently large, the SMPC policy msmpc, v 1s arbitrarily
close (in terms of 7 performance) to a solution of the DCOC problem (if exists)
for sufficiently large V.
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SMPC implementation

t< 0
x <— obtain current x(?)
w <— obtain current w(t)
Tn < generate tree based on t"° <— ¢, £ < x, and w" + w
tcomp < 0
while computing solution of MILP do

if tcomp > tmax then

go to Step 13

end if
10: tcomp < update teomp
11: end while
12: U + solution of MILP; go to Step 14
13: U + solution of LP without integer variables
14: u(t) < apply control u™ € U}, to the system
15: t<+—t+1
16: go to Step 2

e Wb e

© 0 > *
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Second order example with disturbance
Tir1 = Ay + Brug + wy xr = [ri, 7"2]T
Ae = —0.1 1.2] - [ [ l’
0 Bl
B, = . 1 . . .
‘ 0.5 sm(t/?)] 0 20 40 60

Wt € {—1,0, 1}

"0 08 02] TCTU T
Py =103 05 02 - [
035 0.4 0.25 S L
— _2’ 2] % [_2’ 2] t 0 20 t 40 60

up € [—-1,1] @0 =[0,0]", wo=—1
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Second order example with disturbance
« Results for 1,000 random trajectories (samples)
« Hybrid Toolbox in MATLAB 2015a on Laptop
+ Computation time limit for MILP: tmax = 10 sec
Average exit time vs Average computation time (per single
number of tree nodes time instant) vs number of tree nodes
g 0.3
.
5
=7 0.1
o
. . . . . s 0 . . . .
100 200 300 400 500 100 200 300 400 500
N N

@ DP solution for 60x60x250 grid: 32.41 sec, offline computation time: 1.63 hours (in C)
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Second order example with disturbance

Average computation time (per single Worst-case computation time (per single
time instant) vs number of tree nodes time instant) vs number of tree nodes
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Minimum-time MPC problem

Discrete-time model

Tra1 = f(xg,up) = Az + Bug + d,
Control constraints:

ur €U ={ueR"™: Tu<~, yeR"},

Target set:
C={xeR"™: Hr <h, hc R"™},

Time to reach the target set:
T(xo, {ur}) = inf{k : x1 = ¢,y (k,20) € C, k € Z>o}, ¢ ~ solution map

Minimum-time to reach target set:

{UIIIC’I}}ICIU (0, {ug}).
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MILP reformulation of minimum-time MPC

Simplifying assumption: The terminal set is control-invariant

Mixed Integer Linear Programming problem:

subject to

Tpr1 = Az + Bup +d, k=0,--- ,N —1
Hzxp < h+ M1,, ok, k=mp(xg), -, N,
or € {0,1}, k = np(xg), -+, N,

Tup <~, k=0,1,--- ,N — 1,

Opi1 < Ok, k=mp(xg), -+, N —1
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MILP reformulation of minimum-time MPC problem

* The matrices H, h define the polyhedral target set C, M is a large parameter, 1, , IS

a vector of ones, and &y, Is a binary decision variable used to relax the inequality
constraint.

* If §, = 0, then the state lies inside the target set, C.
* If the state falls outside the target set, then §; = 1.

* The additional constraint §;,, < 6, ensures that once C is reached, the trajectory
remains there for all future times.

* The control constraints are l'u;,, <y
* 7;5(xo) IS @ lower bound on the time-to-go

* The minimum-time problem reduces to a Mixed-Integer Linear Program (MILP) and
can be solved using standard numerical algorithms. Matlab: use intlinprog.m
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MILP not requiring target set control invariance

N
Z € — min
k:le(GUO) {Ek}v{5k}a{uk}

subject to

rpr1 = Axp + Bup +d, k=0,--- N —1
Hzp < h+ M1,, (0x + €x), k= mp(xg), -, N,
or € {0,1}, k= mnp(xg), -+, N,
er € {0,1}, k=mp(xg), -, N,

Opi1 +ex =1, k=mnyp(xzg), -, N,
Or(z0) = 0,
lup <~, k=0,1,--- ,N —1,

Opr1 < Ok, k=mp(xg), - ,N—1
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Flexible spacecraft EOMs
& T c(0) s(d)s(0)  c(9)s(0) w1 c(0)s ()
0 | =—2 | 0 clo)e(0) —s@)e®) | x || we [ +n]  s(6)s(0) +c(d)e(w)
bl O 0 s o) w3 (6)5(8)s(w) — 5()c(v)
Jow+wXJw+ Al = Toe + U,
ﬁ+0dﬁ+K77 — —Ad),
0 —w3 ws —3n?(Jy — J3)CpSeCh
w* = w3 0 —w1 , Tgg = 3n2(J3 — Jl)CQSCHSG
—Wy W1 0 3?”&2(J1 — J2)3¢6939

[ 6.45637  1.27814  2.15620 |
—1 |=1.25619 0.91756 —1.67264 1/9

A= — kg /< - m,
10 | 1.11687  2.48901 —0.83674

| 1.23637  —2.6581 —1.12503

C,; = diag(0.0086, 0.0190, 0.0487, 0.1275) sec—!, K = diag(0.59, 1.2184, 3.5093, 6.5004) sec2

n = 277/5400 Se(}_l7 J1 = 150 kg . m2, Jo = 50 kg . m2, J3 = 170 kg - m?
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|n the simulation results, the controller is able to maintain the constraints on the flexible modes while
executing the attitude change maneuver in minimum-time
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Simulation results
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Exclusion Zone Avoidance

* The minimum-time MILP formulation can be augmented with additional binary
parameters, ¢, to represent exclusion zones.

« As an example, consider a rectangular exclusion zone for Euler angles, ¢, 9, y.
For M > 0 sufficiently large, the following inequality constraints can be added to

MILP:
Or < @1+ Mey p,

— o < =@y + Meaj,
Or < 0, + Mes g,
—0, < =0, + Meyg
Y < Y+ Mes i,

—tp < =y + Meg i,
6

ZE@',/@ <5

1=1
ein €{0,1}, i=1,2,3,4,5,6
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Simulation results: Maneuvering rigid spacecraft with
orientation exclusion zones

« The control moments are limited to +/- 0.1 Nm and random unmeasured disturbance torques
sampled from the uniform distribution over the interval [-0.01, 0.01]
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Summary

e MPC strategies can be devised for drift counteraction problems which
involve maximizing expected time (or yield) before constraint violation

e Dynamic programming solutions can become sub-optimal due to numeri-
cal approximations, and are impractical for high order systems

e Value iteration algorithm can be modified to obtain faster convergence

e Much room remains for future research on these problems



DRIFT COUNTERACTION

OPTIMAL CONTROL FOR

VAt N E N IREERINS AEROSPACE SYSTEMS
49

References

Zidek, R., Kolmanovsky, |.V., and Bemporad, A., “Spacecraft drift counteraction optimal control: Open-loop and

receding horizon solutions,” AIAA Journal of Guidance, Control and Dynamics, vol. 41, no. 9, pp. 1859-1872,
September 2018

Zidek, R., and Kolmanovsky, I.V., “Drift counteraction optimal control for deterministic systems and enhancing
convergence of value iteration,” Automatica, vol. 83, pp. 108-115, September, 2017.

Zidek, R., Kolmanovsky, |.V., and Bemporad, A., “Stochastic MPC approach to drift counteraction,”

Proceedings of 2018 Annual American Control Conference (ACC), June 27-29, 2018. Wisconsin Center,
Milwaukee, USA, pp. 721-727.

Zidek, R., and Kolmanovsky, I., “A new algorithm for a class of deterministic drift counteraction optimal control
problems,” Proceedings of 2017 American Control Conference, Seattle, pp. 623-629.

Sutherland, R., Kolmanovsky, 1.V., Girard, A., Leve, F.A., Petersen, C.D., “Minimum-time model predictive

spacecraft attitude control for waypoint following and exclusion zone avoidance,” Proceedings of AIAA SciTech
Forum, 7-11 January 2019, San Diego,



DRIFT COUNTERACTION
M | MICHIGAN ENGINEERING ALROSPACE SYSTEMS
50

UNIVERSITY OF MICHIGAN

BACKUP
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Deterministic DCOC (alternative formulation)

Nonlinear discrete-time model: x;11 = f(x¢,us), zo € G
Control policy: u; = w(xy) € U

First exit-time: 7(xg,7) =inf{t € Zy : x; € G}
Instantaneous reward: g(x,u) > 0

Maximize reward before constraint violation

T(xo,m)—1

Lr(xg,m
E g(x¢, up) — max (o,m)
=0 mell

Most frequently: g(x,u) = 1 = maximize time before constraint violation
II = set of admissible control policies



