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MOTIVATION
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“In the long history of humankind (and animal kind, too) those who learned to collaborate 
and improvise most effectively have prevailed.” - Charles Darwin (1809 – 1882)

❑ Formation control

• e.g. Murray et al. (2006), Egersted et al. (2001)

❑ Collective behavior/flocking

• e.g. Jadbabaie et al. (2003), Shamma et al. (2007)

❑ Multi-agent differential games

• e.g. Stipanovic et al. (2009), Astolfi et al. (2014)

❑ Multi-agent adaptive dynamic programming

• e.g. Lewis et al. (2012)

❑ Coordination

• e.g. Arcak et al. (2007)

❑ Optimal Control-Based Methods

• e.g. How et al. (2011), D’Andrea et al. (2010), Beard 

et al. (2005)



A BROADER CLASS OF MISSIONS

Steer a group of Unmanned Vehicle Systems (UxSs) along desired trajectories while 

meeting mission-specific requirements
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Air sampling missions Search and rescue missions

Autonomous delivery Entertainment



A REPRESENTATIVE EXAMPLE
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❑ Time-critical applications for multiple vehicles:

• Reaching formation
• Sequential auto-landing
• Coordinated road search

Execute collision-free maneuvers and arrive at final destinations at the same 

time (or separated by pre-defined time intervals)
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EXAMPLE: COOPERATIVE ROAD SEARCH

Single DOF gimbal with
high resolution camera

(satellite quality imagery)

2 DOF pan/tilt gimbal with
video camera

(enabling vision-based guidance)

Thermal seeking soaring gliders 
are used as flying antennas to 
extend communication range



DECOUPLING SPACE AND TIME
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❑ Optimal Motion planning

❑ Coordinated tracking control
• Virtual target tracking

• Coordination control

desired trajectory

speed profile

desired path
decoupling

virtual target to be tracked:



MULTI-LOOP ARCHITECTURE
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❑ Optimal Motion planning
▪ Efficient and safe (guaranteed satisfaction of constraints)

❑ Coordinated tracking control
• Virtual target tracking

▪ Vehicle’s performance limitation 

• Coordination control
▪ Communication network (drop-outs, switching topologies, …)
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OPTIMAL MOTION PLANNING
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OPTIMAL MOTION PLANNING
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Approximate - Solve - Interpolate

OCP: determine            and        

that minimize

subject to

NLP: determine        and        

that minimize

subject to
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LGL PSEUDOSPECTRAL 

❑ Legendre-Gauss-Lobatto (LGL) nodes:

❑ Lagrange interpolation:

❑ Differentiation:

❑ Gaussian quadrature:

I. M. Ross and M. Karpenko, A review of pseudospectral optimal control: from theory to flight, Annual Reviews in Control, 36 (2012), pp. 182–197. 5, 6



❑ Advantages

• Lagrange interpolation at Legendre nodes is robust – for sufficiently smooth solutions

• Consistency analysis [Polak, 1997]

▪ NLP is feasible

▪ Solutions to NLP converge to solutions to OCP

▪ The proof heavily relies on orthogonal collocation property of Lagrange interpolants 

• High rate of convergence

❑ Main disadvantage

• Constraints can be imposed only at the nodes

▪ Efficient VS Safe
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LGL PSEUDOSPECTRAL

E. Polak, “Optimization: Algorithms and consistent approximations,” 1997, Springer Verlage Publications.



EFFICIENCY vs CONSTRAINTS SATISFACTION
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Example

A

B

Efficient - unsafe

A

B

Inefficient - safe

Unfeasible

A

B

We seek a class of polynomials with geometric properties that can 

be exploited in satisfying the set of imposed constraints: 

Bernstein polynomials

Collision!

safety

order of approx. (~complexity)

Bernstein

SAFE

n^2*order of approx. (~complexity)



BERNSTEIN POLYNOMIALS
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where

• are the Bernstein polynomial basis

• are the Bernstein coefficients

A degree n Bernstein polynomial is given by

Pierre Bézier (1910-1999)Paul de Casteljau (1930)Sergei Bernstein (1880-1968)



BERNSTEIN POLYNOMIAL APPROXIMATION
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A degree N Bernstein polynomial is given by

❑ Bernstein approximation

❑ Differentiation

❑ Quadrature



OPTIMAL MOTION PLANNING
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OCP: determine            and        

that minimize

subject to

NLP: Let                   . Determine            and        

that minimize

subject to
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MAIN RESULT

PROBLEM OCP PROBLEM NLP
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Does the limit  converge to 

the optimal solution of  

Problem B? 

FEASIBILITY

CONSISTENCY

E. Polak, “Optimization: Algorithms and consistent approximations,” 1997, Springer Verlage Publications.



MINIMUM DISTANCE COMPUTATION
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❑ Convex hull
• A Bernstein polynomial is contained 

within the convex hull defined by its 

Bernstein coefficients

• GJK algorithm computes distance 

between convex hulls (curve and 

obstacle)

❑ de Casteljau algorithm
• Subdivides Bernstein polynomials in 

multiple Bernstein polynomials

❑ Distance between 2 curves, 

min/max velocity, acceleration, 

etc.
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RESULTS: PS vs BERNSTEIN
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RESULTS: SCALABILITY
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RESULTS :: MULTI-VEHICLE MISSIONS

Temporal separation
▪ Bernstein: 55 constraints

▪ Pseudospectral: 550 constraints (55*N)

Spatial separation
▪ Bernstein: 55 constraints

▪ Pseudospectral: 5500 constraints (55*N^2)
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APPROXIMATING NONSMOOTH FUNCTIONS

N = 10 N = 50 N = 500

Gzyl, Henryk, and José Luis Palacios. "On the approximation properties of Bernstein polynomials via probabilistic tools."Boletın de la Asociación Matemática

Venezolana 10.1 (2003): 5-13.

❑ Bernstein approximations can be used to approximate piecewise continuous 

functions

GIBBS PHENOMENON

Bernstein Approximation
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APPROXIMATING NONSMOOTH FUNCTIONS

Minimize

subject to
Optimal controller
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BERNSTEIN POLYNOMIAL APPROXIMATION

Davis, Philip J. Interpolation and approximation. Courier Corporation, 1975.

“The fact seems to have precluded any numerical application of Bernstein

polynomials from having been made. Perhaps they will find application when

the properties of the approximant in the large are of more importance than

the closeness of the approximation.”

Lagrange interpolation (Legendre nodes) Bernstein Approximation (equidistant nodes)



27

BERNSTEIN POLYNOMIAL APPROXIMATION

Lagrange interpolation (Legendre nodes) Bernstein Approximation (equidistant nodes)

safety

order of approx. (complexity)

Bernstein

optimality

(error)

order of approx. (~1/efficiency)

SAFE
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VT tracking: enable vehicle i to track the virtual target independently on

the speed profile

Trajectory tracking: enable vehicle i to track

VT TRACKING vs TRAJECTORY TRACKING
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A path is a curve in space, parameterized by an independent variable 

(virtual time) variable

A trajectory is a curve in space as a function of time: desired location of the

vehicle at any point of time

desired trajectory

speed profile

desired path
decoupling



ASM: VT TRACKING
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Assumption:

VT tracking algorithms are derived depending on 
the vehicle under consideration

Vehicle dyn. 

& kin. model
AutopilotController

Vehicle i



VT TRACKING – FLIGHT TESTS
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Cichella et al. 2011

Cichella et al. 2012

Cichella et al. 2012

Vertical velocity

Pitch

Roll 

Yaw rate

Roll rate

Pitch rate

Speed

Roll rate

Pitch rate

Yaw rate

Total thrust



VT TRACKING vs AUTOPILOT
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❑ Assume is feasible

❑ Assume ideal performance of the
A.P.

❑ Then, the path following error is
locally exponentially stable

Ideal case Non-ideal case

❑ Assume is feasible

❑ Assume non-ideal performance of
the A.P.

❑ Then, the path following error is
locally uniformly bounded



Adjust the progression of the virtual time in order to

❑ achieve coordination between the vehicles

(???)

❑ while taking into account the feasibility constraints on

❑ and the path following error

COORDINATION
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What about coordinating multiple vehicles?



COORDINATION OBJECTIVE
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Initial positions

Final positions

Simultaneous arrival

but…
Absolute time is not a priority

Consensus problem: reach an agreement on some distributed 
variables of interest (coordination states)



COORDINATION OBJECTIVE
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Initial positions

Final positions

Simultaneous arrival

but…
Absolute time is not a priority

Consensus problem: reach an agreement on some distributed 
variables of interest (coordination states)

Synchronize in both
‘position’ and ‘speed’



COORDINATION OBJECTIVE
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Consensus problem: reach an agreement on some distributed 
variables of interest (coordination states)

Synchronize in both
‘position’ and ‘speed’

Speed 

profile

desired path

desired trajectory

Virtual

time



Adjust                            in order to

❑ achieve coordination between the vehicles

❑ while taking into account the feasibility constraints on

❑ and the path following error

COORDINATION: PROBLEM FORMULATION
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Coordinating multiple vehicles



COORDINATION CONTROL LAW
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❑ Distributed control law for group coordination:

• Each vehicle exchanges only its coordination state with its neighbors

• Control law accounts for path following error



COORDINATION CONTROL LAW
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❑ Distributed control law for group coordination:

• Each vehicle exchanges only its coordination state with its neighbors

• Control law accounts for path following error

Virtual target 1

UAV1

UAV2

Virtual target 1 waits 
for UAV1

Virtual target 2

By virtue of coordination, 
also UAV2 waits for UAV1



COORDINATION CONTROL LAW
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❑ Distributed control law for group coordination:

• Each vehicle exchanges only its coordination state with its neighbors

• Control law accounts for path following error

Under which assumptions on the communication network this control law 
guarantees that the coordination objective is attained?



COMMUNICATION NETWORK
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V2

V1 receives info from neighbours V2 and V3

V2 receives info from neighbour V1

V3 receives info from neighbour V1

Laplacian

Matrix      =

2

1

1

V1

V3

-1 -1

-1

-1

0

0

The graph is connected if



COMMUNICATION NETWORK

42

V2

Laplacian

Matrix      =

2

1

1

V1

V3

-1 -1

-1

-1

0

0

The graph is connected if

time

V1

V2

V3

V1

V2

V3

V1

V3

V2

Graph connected in the mean



COMMUNICATION NETWORK
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time

V1

V2

V3

V1

V2

V3

V1

V3

V2

Network connected in
an integral sense,

not pointwise in time
(Arcak 2007)

Parameters        and        characterize the QoS of the network



COORDINATION: MAIN RESULT
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❑ The coordination states satisfy

❑ Assume network connectivity satisfies

❑ For ideal performance of the autopilot the coordination states converge to zero
exponentially with rate of convergence

❑ Moreover, is feasible.

AUTOPILOT 
PERFORMANCE

QoS of the 
communication 

network

V. Cichella, I. Kaminer, V. Dobrokhodov, E. Xargay, R. Choe, N. Hovakimyan, A. P. Aguiar, and A. M. Pascoal. "Cooperative path following of multiple 

multirotors over time-varying networks." IEEE Transactions on Automation Science and Engineering 12, no. 3 (2015): 945-957.



COOPERATIVE ROAD SEARCH: FLIGHT TESTS
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Mosaic of 4 consecutive
high-resolution images

Cooperation ensures satisfactory overlap of 
the field-of-view footprints of the sensors, 

increasing the probability of target detection

UAV 1 UAV 2

../../../naira/UIUC_related/CPFslides&movies/CPF2UAV.mov


AR.DRONE: FLIGHT TESTS
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OPTIMAL MOTION PLANNING
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❑ Implementation
• Develop a toolbox for trajectory generation

▪ Python

▪ Machine learning + Optimization

❑ Uncertainties:
• Address generalized stochastic optimal control problems



❑ Previous work

❑ Future work

49

COORDINATED TRACKING CONTROL

V2

V1

V3

GS

V2

VL

V3

GS



❑ Previous work

❑ Future work
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COORDINATED TRACKING CONTROL

V2

V1

V3

GS

V2

VL

V3

GS

V2

VL

V3

GS

V5

V4

V6 V8

V7

V9



SUMMARY
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❑ Main objective: safe use of cooperative UxSs in complex spaces

❑ Planning and coordinated tracking
• Motion planning

• VT tracking

• Coordination control
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BACKUP SLIDES



WHAT IS AUTONOMY?
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• There is no formal definition of autonomy/autonomous system

• We say that “an autonomous system is a device (software or hardware) that performs 

some tasks or functions independently without human intervention.”

• Human-level decision making

• This implies that an autonomous system can have different levels of autonomy [1].

- Sensory/Motor Autonomy: Translate high-level human commands (e.g. reach 

desired altitude, cruise control, automated parallel parking, desired destination, 

etc.) and sensors (e.g. GPS, IMU, accelerometer) into platform dependent 

signals (e.g. roll, pitch, yaw angles, speed, angular speed, etc.) to achieve low-

level tasks (waypoint navigation, follow pre-planned trajectories, etc.);

- Reactive Autonomy: sensory/motor autonomy + react to perturbations (wind, 

mechanical failure, etc.) coordinate with other objects/vehicles, sense and avoid, 

... 

- Cognitive Autonomy: reactive autonomy + recognize and obey to traffic 

signals, perform SLAM, plan/take decisions (for example based on battery level, 

road traffic and weather information, a set of desired destinations, etc.), learn, …

[1] Dario Floreano and Robert J. Wood. "Science, technology and the future of small autonomous drones." Nature 521.7553 (2015): 

460-466.



OPTIMAL MOTION PLANNING
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❖ Previous Work

❑ Trajectory Generation – Optimal control problem

❑ Bezier curves to efficiently generate trajectories

❑ Efficient and safe – multiple vehicles missions

❖Ongoing and Future work

❑ Theory – Feasibility/Consistency

❑ Implementation – Trajectory Generation toolbox



FUTURE WORK – OPTIMAL MOTION PLANNING
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❖ Theory – feasibility/consistency

❖ Implementation – Trajectory generation toolbox

❑ Genetic algorithm – MATLAB, Julia, Python

❑ Distance between Bezier curves

❑ Flying and ground robots

PROBLEM B PROBLEM BN
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FEASIBILITY

CONSISTENCY

Bezier curves/Bernstein polynomials

Possible funding sources: NSF CMMI-DCSD.
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ONGOING WORK

Computation time: 50 seconds
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ONGOING WORK



COOPERATIVE CONTROL
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❖ Previous Work

❑ Multi-agent coordination

❑ Switching topologies and dropouts

❑ Desired pace known to every vehicle

❖Ongoing and Future work

❑ Leader-follower

❑ Low information – estimation

❑Quantized information 

V2

V1

V3

GS



FUTURE WORK – COOPERATIVE CONTROL
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❖ Leader-Follower

❖ Low information

❖Quantized information

V2

V1

V3

GS

V2

V1

V3

V2

V3

Possible funding sources: NSF CPS, AFOSR DURIP, ONR Science & Autonomy



CONTROL WITH LIMITED INFORMATION
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❑ Problem:

❑ Control law:

❑ Main result:

Future directions

❑ Collision detection with low amount of 

information (turn on/off)

❑ Can the same strategy be used to reach 

formation?

❑ Implementation – flying & ground 

vehicles

Possible funding sources: NSF CPS, AFOSR DURIP.



SOCIALLY AWARE ROBOTS
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: robot’s position and velocity : arousal state

HumanPackage delivery robot in VR Physiological sensors

❑ Virtual Reality

❑ Psychology experiment design

❑Machine learning

Experiments conducted on 62 human subjects for data collection

Possible funding sources: NSF NRI2.0, NSF Smart and Connected Communities, NASA STRG, DoD MURI, ONR Science of Autonomy



5 YEARS VISION
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Co-OPerative Autonomy (COPA) Lab



TEACHING PHILOSOPHY
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❑ Bridge solid theory with hands-on experience
❑ Theory – Implementation – Applications/benefits

❑ Inspire curiosity
❑ Share knowledge and understanding of the big picture

❑ Emphasize the significance of the details that they need to work on

❑ Connect them with the constantly evolving world

Nonlinear 

analysis

Graph Theory

Optimal Control

Simulations

Lab experiments

Applications

Cooperative control



COURSES

❖ Teaching Activities

❑ Introduction to Dynamics

❑ Signal Processing

❑ Control Theory

❑ Robust and Adaptive Control

❖ Mechanical and Aerospace Engineering – Missouri S&T

❑ Statics and Dynamics

❑ Modelling and Analysis of Dynamic Systems

❑ Automatic Control of Dynamic Systems

❑ Flight Dynamics, Stability and Control

❑ Dynamics of Mechanical and Aerospace Systems

❑ Signal Processing

❑ Mechanical and Aerospace Control Systems

❑ …

❖ Additional Courses

❑ Cooperative Autonomous Vehicles 

❑ Robust and Adaptive Control
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OUTREACH

66“The most exciting phrase to hear in science is not ‘Eureka!’, but ‘That's funny’ ” – Isaac Asimov (1929 – 1992)

Undergraduate students 

working on drones 

teleoperation

High-School students 

working on ground robots

Interaction with seniors at 

eldercare facility


