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Abstract

Heather Hussain

With the advent of each next generation technology, demands for a rapidly reconfigurable control
system yielding invariant performance under increasingly unknown or widely varying operating
conditions becomes crucial. Adaptive control has long been viewed as one such control method, with
implementation on high performance aerial vehicles providing nearly uniform performance across the
flight envelope even with limited a priori knowledge on the aircraft’s aerodynamic characteristics. This
adaptation to parametric uncertainties is achieved through a process of online measurement,
evaluation, and compensation through the control input.

While the foundations of robust adaptive control theory were laid in the early 1980’s, obtaining
quantifiable and practically meaningful robust stability margins for adaptive systems remained an open
problem. Successful implementation of adaptive control theory as a viable control solution can only be
achieved when global robustness properties, especially with respect to unmodeled dynamics, are well
understood. This research proposes a solution to this long standing open problem for a class of linear
time-invariant plants, whose states are accessible.

With the use of a modified adaptive update law and sufficient conditions of a frequency-domain
criterion, it is shown that the underlying closed-loop system has globally bounded solutions. That is,
the overall adaptive system is shown to have analytically computable robustness margins that hold for
arbitrary initial conditions.

It is also shown that, with these global properties established, specific conditions can be derived under
which the advantage of adaptation over non-adaptive solutions for the control of uncertain systems is
made clear. This advantage lies in the fact that parameter adaptation allows learning of the
uncertainties whenever the effect of unmodeled dynamics is small, leading to small tracking errors and
improved robustness margins.
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Direct Model Reference Adaptive Control (MRAC)

Introduction

Adaptive control theory is a mature control discipline that allows for real-time compensation
of uncertainties and changes in system dynamics

Premise: Adapt system parameters to provide a vehicle response that more closely follows
the reference model

Graceful degradation in presence of uncertainties

Ability to continue mission

Challenge: Gains are bounded nonlinear integral paths = closed loop dynamics are

inherently nonlinear
- Gain and Phase margin are not defined during adaptation
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Background

Milestones

“An understanding of fundamental limitations is an essential element in all engineering.”
—Gunter Stein, 1989 Bode Lecture

Model Reference

Adaptive Lyapunov Theory

Control [1:2] Based Design ] Analyze & Improve
Performance
Wide Class of Properties
Supersonic flight, Advances in MRAC SChemeS
p;;:i?%ﬁ;i:f Feedback Control Developed (-l Nonlinear Widely used in

Industry,

sparked inspiration. Theopj & Adaptive renewed interest
Stability Control in aerospace
MIT Rule applications

Global

Non-robust boundedness to
Behavior of Rohrs’ Various bounded
Adaptive Example '] robustness  disturbances [l
Control modifications
Uncovered 7-9:10] developed to

counteract Guaranteed
nstabilities [ 11711 Robustness Margins
for Adaptive Control

Robust Adaptive Control Systems 15718l

MAIN RESULT

ystems for aircraft. MIT, Instrumentation Laboratos
iences, Jan 1961. [3] B. Shackcloth and R. L. Butchart.

1] H. P. Whitaker, J. Yamron, A. Ke: MIT, Design of model-reference adaptive contr Jackson & Moreland, 1958. [2] P. V. Osburn, H. P. Whi and A. Ki “New developments in the design of model re
1

S 29th Annual Meeting, no. Paper 61-39. New York, NY: Institute of the Aerospace S ynthesis of Model Reference Adaptive Systems by Liapunov’s Second Method. Boston, MA: Springer US, 1965, pp. 145-152

model reference adaptive control systems,” TEEE TAC, vol. 11, no. 3, pp. 362-367, Jul 1966. [5] B. Egardt, Stability of adaptive controllers. New York: Springer Verlag, 1979. [6] K. S. Narendra, Y. H. Lin, and L. S. Valavani, “Stable adaptive controller design - part II: proof of stability,” IEEE TAC, vol.
25, pp. 440-448, 1980. [7] I. D. Landau, Adaptive control: the model reference approach. Marcel Dekker, 1979. (8] A. Morse, “Global stability of parameter-adaptive control systems,” TEEE TAC, vol. 25, no. 3, pp. 433-439, Jun 1980. [9] P. A. Toannou and P. V. Kokotovic, Adaptive Systems with Reduced
Models. New York: Springer-Verlag, 1983. [10] C.Rohrs, L.Valavani, M.Athans, and i s of continuous-time adaptive control algorithms in the presence of unmodeled dynamics,” vol. 30, no. 9, pp. 881 - 889, Sep. 1985. [11] K. S. Narendra and A. M. Ann:
adaptive control in the presence of bounded disturbances,” TEEE TAC, vol. 31, pp. 306-315, 1986. [12] P. A. Toannou and P. V. Kokotovic, Adaptive Systems with Reduced Models. Secaucus, NJ, USA: Springer-Verlag N Inc., 1983. [13] B. Peterson and K. Narendra, “Bounded error adaptive

control,” IEEE TAC, vol. 27, no. 6, 1982. [14] S. Naik, P. Kumar, and B. Ydstie, “Robust continuous-time adaptive control by parameter projection,” TEEE TAC, vol. 37, no. 2, pp. 182 ~197, feb 1992. [15] M. Matsutani, “Robust adaptive flight control systems in the presence of time delay,” Ph.D.
dissertation, MIT, Feb 2013.
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Robust Adaptive Control

Problem Statement

Adaptive control needs to be:
stable with parametric uncertainties
robust to non-parametric uncertainties

Unmodeled Dynamics Aircraft Dynamics
- Jamodeled Dynamies ] (% < 2
E HysteresisT :
Command Vs i ‘? - z
Zemd E : ‘G'QKS) —~ ° :
¥ = i

Adaptive
Controller

MAIN IDEA: ROBUSTNESS MARGINS FOR ADAPTIVE SYSTEMS

Significant earlier work[4 is conservative.

- Global boundedness for a narrow class of unmodeled dynamics!!-!

- Semi-global boundedness for a slightly larger class of unmodeled dynamics!*4

S.M. Naik, P.R. Kumar, and B.E. Ydstie. Robust Continuous-time Adaptive Control by Parameter Projection. IEEE Transactions on Automatic Control, Feb 1992.

M. Matsutani, A.M. Annaswamy, T. Gibson, and E. Lavretsky. Trustable Autonomous Systems using Adaptive Control. In Proceedings of IEEE Conference on Decision and Control, 2011.
P. A. Toannou and J. Sun. Robust Adaptive Control. Prentice Hall, 1996.

K. S. Narendra and A. M. Annaswamy. Stable Adaptive Systems. Prentice Hall, 1989.

Ll ol o o
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Why is this important?

Non-parametric uncertainties are inevitable = need robust control solutions

I . \I
e ; Uncertainty ; L e
¢ P i [ c !
— . || Parametric Nonparametric (77) ' — —[I— u
my  — ;| — Unknown stiffness, — Flexible Effects, i m2 my;  |—
; Control effectiveness Actuator Dynamics | VW
k1 _ i ! ko k1
lmi| <m £ ;
N 0; = —vieixp
Adaptive PARAMETER ESTIMATE Afrerat
Controller CONTROL INPUT Dynamics
J u |
r |
ONLINE INFORMATION
THEORETICALLY VERIFIABLE
ROBUSTNESS MARGINS
Classical AdaptatiOI} Classical Adaptation!!] My Adaptation!?
A No Unmodeled Dynamlcs A with Unmodeled Dynamics A with Unmodeled Dynamics
m m =
£ £ g
L L K
Q [} ()
g g g
T 3 3
: : g
[ « &
£ & lef o0 X &
5] -
o o 0] = 0o X 2
le] =0
‘e‘desired > > -
Learning Learning Learning 9"“‘"‘?“‘_‘“‘ =167
BOUNDED
LEARNING

1. C.E. Rohrs, L. Valavani, Athans, M., and G. Stein. Robustness of Continuous-time Adaptive Control Algorithms in the Presence of Unmodeled Dynamics. IEEE TAC Automatic Control, 1985
2. H. Hussain, M. Matsutani, A. Annaswamy, and E. Lavretsky, “A new approach to robust adaptive control”, ACC 2016

10
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Why has this been an open problem for so long?

o ' Uncertainty e o
c ) i i c2 c !
i w || Parametric Nonparametric (77) ' — —[I—
my — : — Unknown stiffness, — Flexible Effects, i ma my f—s
Control effectiveness Actuator Dynamics | | VW
k1 - i k2 k1
lmal<m N
N 0; = —vieixp
Adaptive PARAMETER ESTIMATE Aircraft
Controller CONTROL INPUT Dynamics
J u
1 ]
ONLINE INFORMATION
. 0(t) = [ x,(7)b} Pe(r)dr
WITH PARAMETRIC UNCERTAINTY: p(T)0m => NONLINEAR TIME-VARYING CLOSED-LOOP
Actuator Dynamics
E — (82 + 2¢wys) E
E 52+ 2Qw, +w? |
ln = Ga(s)u
+
Vsa + da Ls, P
WITH NONPARAMETRIC UNCERTAINTY: @ G pr) => STATE-DEPENDENT DISTURBANCE
Plant

EXTREMELY DIFFICULT TO SHOW GLOBAL
BOUNDEDNESS
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Main ldea

Robustness to Unmodeled Dynamics

=6 ax
A

9n mnax

Adaptive Law 4+ Projection + Provably Correct Learning Bounds =

MAIN RESULT: ANALYTICAL GUARANTEES FOR GLOBAL
BOUNDEDNESS OF PROJECTION-BASED ADAPTIVE SYSTEMS WITH
UNMODELED DYNAMICS.

. Hussain, M. Matsutani, A. Annaswamy, and E. Lavretsky, Adaptive Control of Scalar Plants in the Presence of Unmodeled Dynamics, IFAC ALCOSP, July 2013.
s ctical Adaptive Control, 16th Yale Workshop, June 2013.
, “Robust Adaptive Control in the Presence of Unmodeled Dynamics: A Counter to Rohrs's Countere:
: ems with State Variables Accessible,”
.w Approach to Robust Adaptive Control, y 2016.
, “Adaptive control of second-order plants in the pre of unmodeled dynamics,” TFAC ALCOSP, June 2016.
. Lavretsky, “Robustness of Adaptive Control Systems to Unmodeled Dynamics: A Describing Function Viewpoint,” ATAA GNC, January 2017

nple,” ATAA Guidance, Navigation, and Control Conference, Aug 2013.
JEE TAC (To Appear).

rma-Subedi, A
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Main Result

Robustness to Unmodeled Dynamics

Theorem 1(b). Suppose r(t) = 0 Vt.
& = (Ao + A(t))z + B1A1(t)ya
Y1 = C@lT:c
G1(s) 2 6] (sl — Ag) 'By
If the transfer function matriz
Z1(8) £ (I + Atmax G1(8)) (1 = A1 max G1(3))"
15 strictly positive real with

A1,maLx - diag(ﬁl,maX7 o 7’l9n—1,ma.x)
then the origin of the adaptive system is globally asymptoti-
cally stable for all |9;(to)| < Vi max-

B AO = Aol - ﬂO,maxp;blbolc(zrv Av(t) = (ﬁO(t) + 190,max)pl;,lbolc(;r~

Plant | Xp(t) = Apxp(t) + byv(t)
in(t) = Apwy(t) + byu(t), Tp Ap bpc; Ty byd, T = Agr + BA(@_ZU + boim
Unmodeled o(t) = ey Tz (t) .| = 0 A + b v T
Dynamics ( ! T n 1 L K y=® 7

Reference Model | Xm(t) = AmXm(t) + by (t)
Control Law | (t) = 0" (t)xp(t) + kpr(t)
)
(

)
)
) = ¢y
5) = c?{(s[nxn — An)71b77
)
)
)

)
Adaptive Law

w;(t) = Proj ({M6};, —{MT'xpb,, Pe};)
ch c Rixm, T, € R™1 and A, e R Ay, € R2*? is Hurwitz

C=lcoca]’, CPICT =1, M = pyCP~" with by, = b, € R, AT P 4 PA,, < —Q, T =~'P,5' > 0, pui, = /b, Pb
Ay bpch

0 A,

Al =

byd,
byt = [‘I’) '} ,CJ:[CJ o} B = pi! [bol bol] 8T =[C 0], A=diag(¥o, - , 1)
n

H. Hussain,, “Adaptive Control in the presence of Unmodeled Dynamics,” MIT Thesis, June 2017.
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Three Key Elements

61 ~0rmas
260!, ..+

PARAMETER IS

PROJECTION MODIFICATION
BOUNDED FOR ALL

6(t) = 7 Proj (0(t), —a,(t)e(t)), ¥ > 0 . TIME
Yo = 07 0= emax
TRANSFORMATION OF STATES
TRANSFORMED ERROR ) B "
IR MR p— s ——— U L
g]_ ,erln/éb]_ + CLQ(ga()
TRANSFORMED PARAMETER PERTUBATION IS
f=M"1y ——0=Mo—> Ji="Proji, (& +mi)ék) CRUOIAL SUALAT
w; = Proj ({M6};, —{MTz,b,), Pe};) 2 (& +my)é STATE

C=lcoca]”, CPICT =1, M = py,CP~! with by, = b, € RV, AT P4 PA,, < —Q, T =~'P,y' > 0, pup = /b P

ABSOLUTE STABILITY FRAMEWORK

'17}11 (tv zl)

A 9a(t, 1) PERFORM LOOP TRANSFORMATIONS, AND

ENFORCE A STABLE FEEDBACK
INTERCONNECTION BETWEEN LINEAR
o SUBSYSTEM AND NONLINEARITY ISOLATED TO
FEEDBACK PATH

H. Hussain,, “Adaptive Control in the presence of Unmodeled Dynamics,” MIT Thesis, June 2017.
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Robust Adaptive Control Problem

Reformulated
Reference Model
% G(s) = C(sl — Ap) b,
G01<S)
| Unmodeled Dynamics Plant
S\ () |l
- ) ™ Gn(s) = Cr]('SI - An) byPyy ™ p(s) = C(SI - Ap) by |
ry=0" N Ll T J ‘
(t) =
Adaptive Gain
Vi = —7i(t)oyi, |Vi(t)] < Vimax
i = Aoz + B(t)y(t) i = (Ao + A(t))x — Bitba(t, 1) = (4o + B(t))z + A(t)
Ag Hurwitz s vy = T il <e Ay Hurwitz
CLTEY I e (R YR Bt} € [~Amass A
y(t) € % v = Jim [[A(t)] =0
ADAPTIVE LAWS & INPUT- Gl(s) é CI(SI - AO) Bl USE ABSOLUTE STABILITY
OUTPUT STABILITY FRAMEWORK

CLOSED-LLOOP ADAPTIVE SYSTEM
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How do | actually apply this?

Second—Order Plant

Theorem 1(b). Suppose r(t) = 0 Vt. Consider the adaptive system described by
= (Ao + A(t))x + BiA1(t)y1
Yy =€, =

Gl(s) = C@I(Sl — Ao)_lBl
If the transfer function matriz

Z]_(S) £ (l -+ Al,max Gl(s))(l — Al,max Gl(s))_l

is strictly positive real with Aq max = diag(¥1,max,  * » In—1,max), then the origin of the adaptive system is globally
asymptotically stable for all |9;(to)| < ¥ max-

Steps to design a robust adaptive controller

(D Using the reference model, compute p&)l and transformation matrix C'
(2) Assemble closed-loop dynamics and derive G (s)

Ay bnpb_b1 7900(? b?ﬂ”b_b1
bpc;ll— Ap 0 - Gl(s)
0 o |0

ﬂO:_ﬂO,max
®) Let Z1(s) 2 (1 + 91.maxG1(5)) (1 = D1 maxG1(s)) "

(@ Find conditions on (4,, by, C,I ) or parameter bounds 9; max such that Zi(s) is SPR for all admissible plant
parameters.

EASY TO SATISFY & CHECK
[ If G1(s) is Hurwitz, o < 94(¢) < B, with @ < 0 < 8 and the Nyquist plot of G1(s) lies in the interior of the }

disk D (a, B) then Z;(s) is SPR and Theorem 1(b) holds.

C=lcoecs]’, CPICT =1, M = py,CP~! with by, = b, € RIU, AT P+ PA,, < —Q, T =~'P,y >0, puy = /by Pbrm

H. Hussain,, “Adaptive Control in the presence of Unmodeled Dynamics,” MIT Thesis, June 2017. 16
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(Cpywp, kp) = (1,0.133,0.16)
(s Wiy km) = (1,0.4,0.16)

Numerical Example e ) = (6,14
Time Delay

Demonstrate applicability using numerical example from previous work (73, = 4ms)

1, 2017.

MM] H. S. Hussain, Y. Yildiz, M. Matsutani, A. M. Annaswamy, and E. Lavretsky, “Computable delay margins for adaptive systems with state variables accessible,” IEEE Transactions on Automatic Control, vol. PP, no. 99, pp. 1

2rd Order Plant in the presence of an input time delay —Use 2”4 Order Padé approximation

Plant contains parametric uncertainty and can be stable or unstable

wm A/ wh +6w2, +1 2 6s 12
(=T ) (o

Gals) = 6 12 2 6 12 '
Wim
(5 + 25 +3) (52 + %+ B) + (54 231 ) (2 = % + ) Do
1.0+ C\} 1.0+ C\}
1 D(—1.4,1.4)
/,// — \9%,
77 RS A\
| / s 1N
T \
1 1 IR L
L 14 1.4 14 N\ I 1.4 R
-1 ! ! 1 -1 N~ A ' ! 1
\ Ga(jw, Gv7) it :
! N
NN Ja
, N —<"ly
O ¢l
\\ -~ < /_’O?” 7
T <= e T
0.1349 RS R 1 0.1269
Cp,actual =1 = 0.2268 = 0.2134
* m 0.242 * W 0.2277
T* = 245ms y u 02415 7 = 230ms N - 0.23
—Cp = -t m 0.2449 - =1 - m 0.2304

SUFFICIENT FREQUENCY DOMAIN CRITERION CAN BE CHECKED GRAPHICALLY FOR LOWER ORDER
SYSTEMS > DELAY MARGIN CAN BE DERIVED USING NYQUIST PLOT & CIRCLE CRITERION AS

7* = rrClin (max ({7 | G1(jw,Cp, T) € D(—U1,maxs P1,max)}))

H. Hussain,, “Adaptive Control in the presence of Unmodeled Dynamics,” MIT Thesis, June 2017. 17
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Cp,actual =1

Simulation Studies 7 = 245ms
Time Delay

Improved analytical delay margin from 7, = 4ms to 7 = 245ms
Simulation studies validate theoretical derivations from Time Delay numerical example

T <17 = ASYMPTOTIC STABILITY T > 7% — INSTABILITY

wlll , . .
' H ””I”""l"lllll||yl|p“|““““““ L
": I" I LU L L L S e e e e el e e LA L LN
UL
]Hl“l“' N0 8 i) -
- |“||“l e e | .
,;:,:“'— . ‘l INANARRARARARANAN NNRARANRANANR NNARARAR
L. |
mit)* .
’
— T —————————
!nm; (%) hmclisl

(a) 7 = 241.Tms (b) 7 = 245 ms

METHODOLOGY & APPROACH EXTENDS TO THE CASE OF REAL (NOT APPROXIMATED) TIME—DELAY
AND PROVIDES A PRACTICAL AND ANALYTICALLY COMPUTABLE DELAY MARGIN

H. Hussain,, “Adaptive Control in the presence of Unmodeled Dyn
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Why Adapt?

Parameter Convergence

Reference Model B (t) = Am@m(t) + br(t)
T (T Apz + bu(t
Plant () = o) ) Goal: z,(t) = zp(t) <= 0(t) =0*
Control Input u(t) = 0(t ) p(t) +7(t) A, + bo* =
p =
Closed-loop t, = (4p + b‘gT( t))xp +br(t) tchine conditi (1)
matching condition

(6(t) — 6%)

Theorem (Parameter Convergence [Kokotovic et al., 1985]). Consider the system

[é A bw(t)T] [e]
¢] |—pwrT 0 |[6]

with ¢ = 0 — 0% and Wo(s) 2 h' (sl — A) 'b. Let w(t) be bounded, almost periodic, and persistently exciting.
Then there exists a p* > 0 such that for all p € (0, p*], the origin of the system is exponentially stable if

A < / Tw(t)Wm(s)w(t)TdT>] > 0.

. T
+ Unmodeled Dynamics: Fp] [ A*-r bc"} {wp] + {0] r(t) }ﬂ@* s.t. (1) is satisfied
in| = [bn0* T A, |zn] T by

min R
7

Condition 1. If 30 such that the equality
T
(1= Gp(5)Gy(5)8 ) Gp(8)Gy(s)r(t) = G (s)r(t)
is satisfied, then an operator matching condition is said to exist for 6. Furthermore, if the adaptive gain 0(t)
then the tracking error e = x, — x,, s equal to zero.

=40,

DERIVED NOTIONALLY EQUIVALENT MATCHING CONDITION, IN FREQUENCY DOMAIN, FOR WHICH
LOCAL CONVERGENCE THEOREM HOLDS & ORIGINAL CONTROL GOAL OF TRACKING IS ACHIEVED.

H. Hussain,, “Adaptive Control in the presence of Unmodeled Dynamics,” MIT Thesis, June 2017.
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N M " (vawpvkp) = (17171)
Simulation Studies (o) = 131

Parameter Convergence (Rohrs’ Unmodeled Dynamics)

r(t) = 100sin(wt), w € {Z,Z, 38, 7} 8

=, r(t) = 100 with 4 € [0.06, 0.3]

\ TRACKING ERRORS EXPONENTIALLY DECAY
R |

A\ L |

68 e e e e 68
n A 200

| A AR IR TR RN R o e asosorsss e o s e,
LG

100}

50

5 20

0 50
time
-0.3
Vi (t)  e--® -
-2. L -
%8 -0.9 -0.9
Jo(t)

ADAPTIVE CONTROLLER IS ABLE TO ASYMPTOTICALLY TRACK EVEN IN THE PRESENCE OF BOTH
PARAMETRIC AND NONPARAMETRIC UNCERTAINTIES, DUE TO THE EXISTENCE OF AN OPERATOR
MATCHING CONDITION & PARAMETER CONVERGENCE — CLEARLY DEMONSTRATES THE BENEFIT OF
ADAPTATION OVER NON-ADAPTIVE CONTROL DESIGNS

H. Hussain,, “Adaptive Control in the presence of Unmodeled Dynamics,” MIT Thesis, June 2017. 20
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Summary
Robust Adaptive Control

Solved an open problem:
- Rigorously proved global boundedness of a closed-loop adaptive system comprised of a LTI nth—order plant, whose
state variables are accessible, in the presence of unmodeled dynamics
- Class of unmodeled dynamics for which the system is robust to is shown to be analytically computable.

Reformulated the robust adaptive control problem into a well-known stability

framework
- Employed the Circle Criterion to analyze stability of the solutions and proved global boundedness

Sufficient frequency domain criterion guarantees global boundedness
Verified fundamental trade-off between adaptation & robustness

Validated analytical results via simulation
- Demonstrated applicability and practicality of the result

Extends to Multiple-Input systems and systems with time-delay

Proved that tracking is still possible even in the presence of unmodeled
dynamics, due to the existence of a novel operator matching condition

‘L

imitations & Future Work:
— Currently applies to LTI plants whose states are accessible, apply methodology to output feedback
— Consider other classes of non-parameteric uncertainties and/or nonlinear plants

QNE HAVE SHOWED THE EXTENSION OF THIS RESULT TO SUCH SYSTEMS AT BOEING. j

21
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Fundamental Trade-off

Scalar Numerical Example (Roll Dynamics)

Adaptive system is robust to all unmodeled dynamics shown in shaded regions (| for fast

roll dynamics and for slower) given adaptation bound 6.«
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l LARGER ADAPTATION BOUND = SMALLER ROBUST CLASS OF UNMODELED DYNAMICS l




