Theory and Algorithms for Safe and Resilient Multi-Agents Systems

Dimitra Panagou

Joint work with

James Usevitch, Kunal Garg and Ehsan Arabi

Aerospace Engineering, University of Michigan

Multi-Agent Planning and Control Ground, marine, aerial, space vehicles

Safety and Resilience under Uncertainty Towards advancing autonomy

Nonlinear Control and Estimation Robust control, estimation and learning

UNIVERSITY OF

Safety and Resilience Architecture

MICHIGAN ENGINEERING

Outline

- Resilient Multi-Agent Networks
 - Information Reconstruction
 - Formation Control
- Safety Control under Spatiotemporal Constraints
 - Finite-Time Stability (FTS) and Fixed-Time Stability (FxTS)
 - Fixed-Time Control Lyapunov Functions
 - QP approach
 - CLF approach (WeB18.5)
- Future Research

Earlier Resilience Results

- Network as a digraph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ $\mathcal{V} = \{1, \dots, n\}$ $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$
- Up to F-local adversaries
 - x Share malicious information and/or do not play consensus
- **General Resilient Communication Graphs**
 - r-robustness and (r,s)-robustness
- □ Resilient Filtering: W-MSR algorithm
- Principle: Each agent
 - sorts received information
 - filters out the F highest and F lowest values
- Consensus if the network is
 - (2F+1)-robust or (F+1,F+1)-robust
- Challenges:
- Checking r-robustness and (r,s)-robustness is NP-hard
- Consensus to arbitrary reference values is not guaranteed

Definition 1

A set $S \subset \mathcal{V}$ is *r*-reachable $(r \in \mathbb{Z}_{\geq 0})$ if $\exists i \in S$ such that $|\mathcal{V}_i \setminus S| \geq r$

Definition 2

A digraph \mathcal{G} is *r*-robust if for all nonempty, disjoint $S_1, S_2 \subset \mathcal{V}$, at least one subset is *r*-reachable.

Our Resilience Results

- [1]: *k*-circulant graphs have r-robustness and (r,s)-robustness as functions of *k*
 - Resilient, scalable network topologies [CDC17]
- [2]: Resilient consensus to **arbitrary** reference values in timeinvariant and time-varying graphs
 - Resilient Leader-Follower consensus [ACC18]

[3]: Resilient formation control

٠

- In finite time under bounded control inputs [CDC18]
- [4]: Graph r-robustness and (r,s)-robustness as a MILP
 - More efficient than state-of-the-art methods [ACC19]
 - Approximate lower bounds of r- and (r,s)-robustness
- [5]: Resilient Barriers for Undirected Networks
- J. Usevitch et. al. (Journal versions: [5], [6], [7])

Resilient Formations: Problem Statement

- Time invariant digraph $\mathcal{D} = (\mathcal{V}, \mathcal{E})$, $\mathcal{V} = \{1, \dots, n\}$
- Agent states $oldsymbol{p}_i \in \mathbb{R}^n, i \in \mathcal{V}$
- $\boldsymbol{\xi}_i \in \mathbb{R}^n \ \forall i \in \mathcal{V}$: Formation vectors (target locations)
- $\boldsymbol{ au}_i = \boldsymbol{p}_i(t) \boldsymbol{\xi}_i \; orall i \in \mathcal{V}$: Center of formation

- How can the formation be achieved in the presence of misbehaving agents?
- What are the communication topologies and information filters that ensure resilient consensus?

Resilient Formations: Communication Topology

Definition 1 (Resilient Directed Acyclic Graph (RDAG))

MICHIGAN ENGINEERING

Digraph $\mathcal{D} = (\mathcal{V}, \mathcal{E})$ is RDAG with parameter $r \in \mathbb{N}$ if all of the following properties hold:

- **1** There exists partitioning of \mathcal{V} into $\mathcal{S}_0, \ldots, \mathcal{S}_m \subset \mathcal{V}, \ m \in \mathbb{Z}$ such that $|\mathcal{S}_{\dot{\mathbf{0}}}| \geq r$
- **2** For each $i \in S_j$, $1 \le j \le m$, $\mathcal{V}_i \subseteq \bigcup_{k=0}^{j-1} S_k$
- 3 For each $i \in S_j, \ 1 \le j \le m$, $|\mathcal{V}_i| \ge r$

- The size of the layer S₀ is at least r
- 2) In-neighbors are only from layers above
- 3) Each agent has at least r in-neighbors

Resilient Formations: Finite-Time Controller

Closed loop system:

MICHIGAN ENGINEERING

$$\begin{aligned} \dot{\boldsymbol{\tau}}_i &= \boldsymbol{u}_i, \\ \boldsymbol{u}_i(t) &= \gamma_i(t) \sum_{j \in \mathcal{R}_i(t)} w_{ij}(t) (\boldsymbol{\tau}_j - \boldsymbol{\tau}_i) \| \boldsymbol{\tau}_j - \boldsymbol{\tau}_i \|^{\alpha - 1}, \ 0 < \alpha < 1 \end{aligned}$$

where

- $\gamma_i(t) = \frac{\sigma_i(t)}{\|u_i^p\|}$
- Saturation function:

$$\sigma_i(t) = \min\{\|\boldsymbol{u}_i^p(t)\|, u_M\},\$$
$$\boldsymbol{u}_i^p(t) = \sum_{j \in \mathcal{R}_i(t)} w_{ij}(t) (\boldsymbol{\tau}_j(t) - \boldsymbol{\tau}_i(t)) \|\boldsymbol{\tau}_j - \boldsymbol{\tau}_i\|^{\alpha - 1}, \ 0 < \alpha < 1$$

• Input satisfies bounds $\|oldsymbol{u}_i\| \leq u_M \; orall i \in \mathcal{V}$

Theorem 2

Consider a digraph \mathcal{D} which is an RDAG with parameter 3F + 1, where $\mathcal{S}_0 = \mathcal{L}$ and \mathcal{A} is an F-local set. Under the proposed closed loop dynamics, τ_i will converge to τ_L in finite time for all normal agents $i \in \mathcal{N}$.

RDAG of 80 agents r = 16 F = 5 local model m = 5 sublevels

MICHIGAN ENGINEERING

Resilient Formations: System Architecture

Leaders:

- Determine trajectory for center of formation (COF)
- Encode COF trajectory into unique parameters
- Resiliently transmit parameters to outneighbors

Followers:

- Receive and accept parameters only if resilience criteria satisfied
- Reconstruct unique trajectory of COF
- Add local formation offset to obtain local desired trajectory
- Track local trajectory

Resilient Formations: Information Propagation

Multi-Source Resilient Propagation Algorithm [8]

• RDAG with parameter (2F+1)

MICHIGAN ENGINEERING

- F-local misbehaving agent model
- Including misbehaving leaders
- S₀ layer comprises of leaders only
- Example: RDAG with r=3

Resilient Formations: Information Propagation

Multi-Source Resilient Propagation Algorithm [8]

• Leaders transmit message to out-neighbors

Multi-Source Resilient Propagation Algorithm [8]

- Leaders transmit message to out-neighbors
- Followers accept message if identically received from at least (F+1) in-neighbors

Resilient Formations: Information Propagation

Multi-Source Resilient Propagation Algorithm [8]

• Leaders transmit message to out-neighbors

MICHIGAN ENGINEERING

- Followers accept message if identically received from at least (F+1) in-neighbors
- Accepted messages by followers transmitted to their out-neighbors, and so on

Experimental Results

Safety and Resilience Architecture

MICHIGAN ENGINEERING

Spatiotemporal Control Synthesis: Overview

MICHIGAN ENGINEERING

Safety (set invariance)
 State trajectories must remain in a safe set

• Performance (set attractivity)

State trajectories must reach desired sets within **specified** time intervals

Spatiotemporal Control: Approach

Synthesis tools: Quadratic Programs (QPs) for FTS/FxTS/PTS **[9, 10]**

Modified Sontag's Formula for PTS (ACC20 Paper WeB18.5) [11]

- Analysis tools: FTS of Switched/Hybrid Systems [12]
- K. Garg, E. Arabi, and D. Panagou

Spatiotemporal Control Synthesis via QP

Let $\dot{x} = f(x) + g(x)u$ where $x \in \mathbb{R}^n, u \in U \subset \mathbb{R}^m$

Assume that:

MICHIGAN ENGINEERING

- There exists a safe set S_s = {x ∈ ℝⁿ | h(x) ≤ 0} where h(x) is continuously differentiable
- There exist sets $S_i = \{x \in \mathbb{R}^n \mid h_i(x) \le 0\}, i \in \{0, 1, \dots, N\}$ where $h_i(x)$ are continuously differentiable
- $S_s \cap S_0 \neq \emptyset, S_i \cap S_{i+1} \neq \emptyset$, for $0 \le i \le N-1$
- There exist time intervals $[t_i, t_{i+1})$ such that $t_{i+1} t_i \ge \overline{T}$

Problem statement (Problem 1)

Find a control input $u(t) \in U = \{A_u u \leq b_u\}$ such that for $x(0) \in S_s \cap S_0$,

•
$$x(t) \in S_s$$
, $\forall t \ge 0$,

•
$$x(t) \in S_i$$
, $\forall t \in [t_i, t_{i+1})$

MICHIGAN ENGINEERING

Finite-Time and Fixed-Time Stability

Finite-time Stability (FTS) (Bhat and Bernstein, 2000)

Theorem 1. Suppose there exists a positive definite function V for system (1) such that

 $\dot{V}(x) \le -cV(x)^{\beta},$

with c > 0 and $0 < \beta < 1$. Then, the origin of (1) is FTS with settling time function

 $T(x(0)) \le \frac{V(x(0))^{1-\beta}}{c(1-\beta)}.$

Fixed-time Stability (FxTS) (Polyakov, 2012)

Theorem 1 ([2]). Suppose there exists a positive definite function V for system (1) such that

 $\dot{V}(x) \le -aV(x)^p - bV(x)^q$

with a, b > 0, 0 and <math>q > 1. Then, the origin of (1) is FxTS with continuous settling time T that satisfies

 $T \le \frac{1}{a(1-p)} + \frac{1}{b(q-1)}.$

Prescribed-time Stability (PTS)

```
Time of
convergence T can
be chosen
arbitrarily by the
user.
Also called
predetermined or
predefined.
```


Control Barrier Functions

Reciprocal Control Barrier Functions (Ames et al, TAC 2017)

Definition: Let $\dot{x} = f(x) + g(x)u$, where f(x), g(x) are locally Lipschitz $x \in \mathbb{R}^n, u \in U \subset \mathbb{R}^m$

A continuously differentiable function $B : Int(\mathcal{C}) \to \mathbb{R}$ is called a Reciprocal Control Barrier Function (RCBF) for the set C if there exist class K functions $\alpha_1, \alpha_2, \alpha_3$ such that for all $x \in Int(\mathcal{C})$

$$\frac{1}{\alpha_1(h(x))} \le B(x) \le \frac{1}{\alpha_2(h(x))}$$
$$\inf_{u \in U} [L_f B(x) + L_g B(x)u - a_3(h(x))] \le 0$$

Let the set $K_{rcbf}(x) = \{u \in U : L_f B(x) + L_g B(x)u - a_3(h(x)) \le 0\}$ Then any locally Lipschitz $u : \text{Int}(\mathcal{C}) \to U$ such that $u(x) \in K_{rcbf}(x)$ will render Int(C) a forward invariant set.

CLF-CBF QPs

$$\mathbf{u}^{\star}(x) = \arg\min_{\mathbf{u}=(u,\delta)\in\mathbb{R}^m\times\mathbb{R}}\frac{1}{2}\mathbf{u}^T H(x)\mathbf{u} + F(x)^T\mathbf{u}$$

s.t.
$$\begin{split} L_f V(x) + L_g V(x) u + c_3 V(x) - \delta &\leq 0 \\ L_f B(x) + L_g B(x) u - \alpha(h(x)) &\leq 0 \end{split}$$

Theorem [Ames et al, TAC 2017]:

Suppose that:

the vector fields f and g of the control system,

the gradients of the RCBF B and CLF V,

the cost function terms H(x) and F(x) in (CLF-CBF QP)

are all locally Lipschitz. Suppose furthermore that

 $L_g B(x) = 0$ for all $x \in \text{Int}(C)$.

Then the solution, $\mathbf{u}^*(x)$, of (CLF-CBF QP) is locally Lipschitz continuous for $x \in \text{Int}(C)$. Moreover, a closed-form expression can be given for $\mathbf{u}^*(x)$.

Outline

- Resilient Multi-Agent Networks
 - Information Reconstruction
 - Formation Control
- Spatiotemporal Control Synthesis
 - Finite-Time Stability (FTS) and Fixed-Time Stability (FxTS)
 - Fixed-Time Control Lyapunov Functions
 - QP approach
 - CLF approach (WeB18.5)
- Future Research

Let $\dot{x} = f(x) + g(x)u$ where $x \in \mathbb{R}^n, u \in U \subset \mathbb{R}^m$

Definition: The continuously differentiable function $V : \mathbb{R}^n \to \mathbb{R}$ is called a **Fixed-Time Control Lyapunov Function** wrt a set *S* (FxT-CLF-*S*) of the system with parameters a_1, a_2, b_1, b_2 if

i) It is positive definite wrt a closed set S, i.e.,

$$V(x) > 0 \text{ for } x \notin S$$
$$V(x) = 0 \text{ for } x \in \partial S$$

ii) $\inf_{u} [L_f V(x) + L_g V(x)u] \le -a_1 (V(x))^{b_1} - a_2 (V(x))^{b_2}, \ \forall x \notin \text{Int}(S)$

where $a_1, a_2 > 0$, $b_1 > 1$, $0 < b_2 < 1$ satisfy $\frac{1}{a_1(b_1 - 1)} + \frac{1}{a_2(1 - b_2)} \le \overline{T}$ with \overline{T} being a user-defined time.

FxT-CLF-CBF for Spatiotemporal Control

MICHIGAN ENGINEERING

If there exist
$$a_{i1}, a_{i2}, \lambda, \lambda_i > 0$$
, $b_{i1} > 1, 0 < b_{i2} < 1$ and control input u such that
 $\overline{T} \ge \max_{i \in \Sigma} \left\{ \frac{1}{a_{i1}(b_{i1} - 1)} + \frac{1}{a_{i2}(1 - b_{i1})} \right\}$ (C₀)
 $\inf_{u \in U} \{L_f h + L_g h u + \lambda h\} \le 0$ (C₁)
 $\inf_{u \in U} \{L_f h_i + L_g h_i u + \lambda_i h_i\} \le 0$ (C₂)
 $\inf_{u \in U} \{L_f h_{i+1} + L_g h_{i+1} u\} \le -a_{i1} \max\{0, h_{i+1}\}^{b_{i1}} - a_{i2} \max\{0, h_{i+1}\}^{b_{i2}}$ (C₃)
hold for $t \in [t_i, t_{i+1})$, then, the control input $u(t)$ solves Problem 1.

- C_0 ensures exact convergence before $t = t_{i+1}$ (FxTS for settling time \overline{T})
- C_1 results into $h(x) = 0 \Rightarrow \dot{h}(x) \le 0 \Rightarrow$ forward invariance of set S_s
- C_2 results into $h_i(x) = 0 \Rightarrow \dot{h}_i(x) \le 0 \Rightarrow$ forward invariance of set S_i
- C_3 results into $\dot{h}_{i+1} \leq -a_{i1}h_{i+1}^{b_{i1}} a_{i2}h_{i+1}^{b_{i2}} \Rightarrow FxTS$ to set S_{i+1}
- C_3 also results into forward invariance of S_{i+1} once $x(t) \in S_{i+1}$

FxT-CLF-CBF for Spatiotemporal Control

A Quadratic Program (QP) to solve Problem 1

Theorem [9]

Let the solution to the following QP defined for $t \in [t_i, t_{i+1})$:

$$\min_{v,a_{i1},a_{i2},\lambda_i,\delta}\frac{1}{2}v^2$$

$$\begin{split} s.t. \ L_f h_i + L_g h_i v + \lambda_i h_i &\leq 0, \\ L_f h_{i+1} + L_g h_{i+1} v &\leq \delta h_{i+1} - a_{i1} \max\{0, h_{i+1}\}^{b_{i1}} - a_{i2} \max\{0, h_{i+1}\}^{b_{i2}}, \\ A_u v &\leq b_u, \\ \frac{2}{\overline{T}} &\leq a_{i1} (b_{i1} - 1) \leq a_{i2} (1 - b_{i2}), \end{split}$$

be denoted as $[\overline{v}_i(t), a_{i1}, a_{i2}, \lambda_h, \lambda_i]$. Then, $u(t) = \overline{v}_i(t)$ for $t \in [t_i, t_{i+1})$ solves Problem 1.

Robust Fixed-Time Stability

Theorem (Robust FxTS Theorem)

Let $V : \mathbb{R}^n \to \mathbb{R}$ be a \mathcal{C}^1 , positive definite function, satisfying

$$\dot{V} \le -c_1 V^{a_1} - c_2 V^{a_2} + c_3 V,$$

with $c_1, c_2 > 0$, $a_1 = 1 + \frac{1}{\mu}$, $a_2 = 1 - \frac{1}{\mu}$ for some $\mu > 1$, along the system trajectories. Then, there exists $D \subset \mathbb{R}^n$ such that for all $x(0) \in D$, the system trajectories reach the origin in a fixed time T. Furthermore, if $c_3 < 2\sqrt{c_1c_2}$, and V is radially unbounded, then $D = \mathbb{R}^n$.

- Relaxation of condition $\dot{V} \leq -c_1 V^{a_1} c_2 V^{a_2}$
- Robustness w.r.t. additive vanishing disturbance if origin of *nominal* system is FxTS
- Helps guarantee feasibility of QP

MICHIGAN ENGINEERING

FxT-CLF-CBF for Spatiotemporal Control

Consider the following optimization problem:

$$\delta_1, \delta_2$$
 - slack terms

Control input constraint PT-CLF condition for S_g ZCBF condition for S_s

where
$$p_1, p_2 > 0, \gamma_1 = 1 + \frac{1}{\mu}$$
 and $\gamma_2 = 1 - \frac{1}{\mu}$ with $\mu > 1, \ \alpha_1 = \alpha_2 = \frac{\mu \pi}{2\bar{T}}$

- Slack terms $\delta_1, \delta_2 \rightarrow$ feasibility for all x
- δ_1 dictates region of convergence
- Convergence time $\leq \bar{T}$

K. Garg, E. Arabi, D. Panagou "*Fixed-time control under spatiotemporal and input constraints: A QP based approach*," submitted to IEEE TAC, under revision.

Theorem 5. Let Assumption 3 hold. If the solution of (10), given as $(v^*(\cdot), \delta_1^*(\cdot), \delta_2^*(\cdot))$, satisfies

$$\delta_1^*(x) < 2\sqrt{\alpha_1 \alpha_2}, \quad \forall \ x \in S_S, \tag{11}$$

then, for all $x(0) \in S_S$, the closed-loop trajectories x(t) under $u(\cdot) = v^*(\cdot)$ reach the set S_G in a fixed time, while satisfying safety requirement, i.e., $x(t) \in S_S$ for all $t \ge 0$. If (11) does not hold, then there exists $D \subset S_S$ such that for all $x(0) \in D$, the closed-loop trajectories satisfy $x(t) \in S_S$ for all $t \ge 0$ and reach the goal set S_G within a fixed time.

Assumption 3: The strict complementary slackness holds.

K. Garg, E. Arabi, D. Panagou "*Fixed-time control under spatiotemporal and input constraints: A QP based approach,*" submitted to IEEE TAC, under revision.

Example: STL Mission Synthesis

Simulation Results

System Dynamics:

CHIGAN ENGINEERING

 $\dot{x_i} = u_i$

Objective:

$$\begin{array}{rcl} (x_1,t) \vDash & G_{[0,T_4]}\phi_s \wedge F_{[0,T_1]}\phi_2 \wedge F_{[T_1,T_2]}\phi_3 \wedge F_{[T_2,T_3]}\phi_4 \wedge F_{[T_3,T_4]}\phi_1 \\ (x_2,t) \vDash & G_{[0,T_4]}\phi_s \wedge F_{[0,T_1]}\phi_2 \wedge F_{[T_1,T_2]}\phi_1 \wedge F_{[T_2,T_3]}\phi_4 \wedge F_{[T_3,T_4]}\phi_3 \end{array}$$

Equivalently,

• $x_1(t), x_2(t) \in S_s = \{x_i(t) | ||x_i||_{\infty} \le 2, ||x_i||_2 \ge 1.5\}$ for all $t \ge 0$,

and maintain a minimum separation d_m at all times

On or before a given T₁ satisfying 0 < T₁ < ∞, agent 1 and 2 should reach the square C₂ and so on

Example: STL Mission Synthesis

Simulation Results

Outline

- Resilient Multi-Agent Networks
 - Information Reconstruction
 - Formation Control
- Safety Control under Spatiotemporal Constraints
 - Finite-Time Stability (FTS) and Fixed-Time Stability (FxTS)
 - Fixed-Time Control Barrier Functions
 - QP approach
 - CLF approach (WeB18.5)
- Future Research

- **Problem 1.** Find a control input $u_i(t) \in \mathcal{U}_i = \{v \in \mathbb{R}^m; | u_{i,min_j} \leq v_j \leq u_{i,max_j}, j = 1, 2, ..., m\}, t \geq 0$, such that for all $x_i(0) \in S_{S_i}$,
 - $x_i(\bar{T}) \in S_{G_i}$ for some user-defined $\bar{T} > 0$, for all $i = 1, 2, \ldots, N$;
 - $||x_i(t) x_j(t)|| \ge d_s$, for all $t \ge 0$, for all $i \ne j$, where $d_s > 0$ is a user-defined safety distance;
 - $x_i(t) \in S_{S_i}$, for all $t \ge 0$, for all i = 1, 2, ..., N.

• CBF condition for set invariance

$$\sum_{i=1}^{N} \left(\frac{\partial h(\vec{x})}{\partial x_i} f_i(x_i) + \frac{\partial h(\vec{x})}{\partial x_i} g_i(x_i) u_i \right) \ge -\alpha(h(\vec{x}))$$

 α : any locally Lipschitz extended class- \mathcal{K}_{∞} function

• Worst-case **adversarial** agents:

$$u_k^{\inf}(t) = \underset{u_k \in \mathcal{U}_k}{\operatorname{arg inf}} \left[\frac{\partial h(\vec{x})}{\partial x_k} \left(f_k(x_k) + g_k(x_k) u_k \right) \right]$$

• Intent: drive $h(\vec{x})$ to negative value (violate set invariance)

• Best-case control action for **normal** agents:

$$u_i^{\sup}(t) = \underset{u_i \in \mathcal{U}_i}{\operatorname{arg\,sup}} \left[\frac{\partial h(\vec{x})}{\partial x_i} \left(f_i(x_i) + g_i(x_i) u_i \right) \right]$$

• Intent: drive $h(\vec{x})$ to positive value (preserve set invariance)

$$\sum_{i \in \mathcal{V} \setminus \mathcal{A}} \sup_{u_i \in \mathcal{U}_i} \left[\frac{\partial h(\vec{x})}{\partial x_i} \left(f_i(x_i) + g_i(x_i) u_i \right) \right] + \sum_{k \in \mathcal{A}} \inf_{u_k \in \mathcal{U}_k} \left[\frac{\partial h(\vec{x})}{\partial x_k} \left(f_k(x_k) + g_k(x_k) u_k \right) \right] \ge -\alpha \left(h(\vec{x}) \right)$$

$$35$$

References

[1] J. Usevitch and D. Panagou "r-Robustness and (r,s)-Robustness of Circulant Graphs", CDC 2017

[2] J. Usevitch and D. Panagou, "Resilient Leader-Follower Consensus to Arbitrary Reference Values", ACC 2018

[3] J. Usevitch, K. Garg and D. Panagou "Finite-Time Resilient Formation Control with Bounded Inputs", CDC 2018

[4] J. Usevitch and D. Panagou, "Determining r-Robustness of Arbitrary Digraphs Using Zero-One Linear Integer Programming", ACC 2019

[5] J. Usevitch and D. Panagou, "Resilient Trajectory Propagation in Multi-Robot Networks," submitted to IEEE TRO, under review

[6] J. Usevitch and D. Panagou "Resilient Leader-Follower Consensus to Arbitrary Reference Values in Time-Varying Graphs", IEEE Transactions on Automatic Control, vol. 65, no. 4, pp. 1755-1762, April 2020

[7] J. Usevitch and D. Panagou "Determining r- and (r,s)-Robustness of Digraphs Using Mixed Integer Linear Programming", Automatica, vol. 111, 108586, pp. 1-13, January 2020

[8] J. Usevitch and D. Panagou, "Resilient Leader-Follower Consensus with Time-Varying Leaders in Discrete-Time Systems", CDC 2019

[9] K. Garg and D. Panagou, "Control-Lyapunov and Control-Barrier Functions based Quadratic Program for Spatio-temporal Specifications", CDC 2019

[10] K. Garg, E. Arabi and D. Panagou. "Fixed-time control under spatiotemporal and input constraints: A QP based approach," submitted to IEEE TAC, under review, arXiv preprint arXiv:1906.10091 (2019)

[11] K. Garg, E. Arabi and D. Panagou, "Prescribed-time convergence with input constraints: A control Lyapunov function based approach", 2020 American Control Conference, Denver, CO, July 2020

[12] K. Garg and D. Panagou "Finite-Time Stability of Hybrid Systems with Unstable Modes", resubmitted to IEEE TAC, under review.

[13] K. Garg and D. Panagou, "Characterization of Domain of Fixed-time Stability under Control Input Constraints", CDC 2020, under review

Sponsors

Thank you!

Questions?

