Multi-Vehicle and Assured Autonomous Control for Aerospace Applications IEEE TCAC Workshop, 2021 CCTA, August 8th 2021

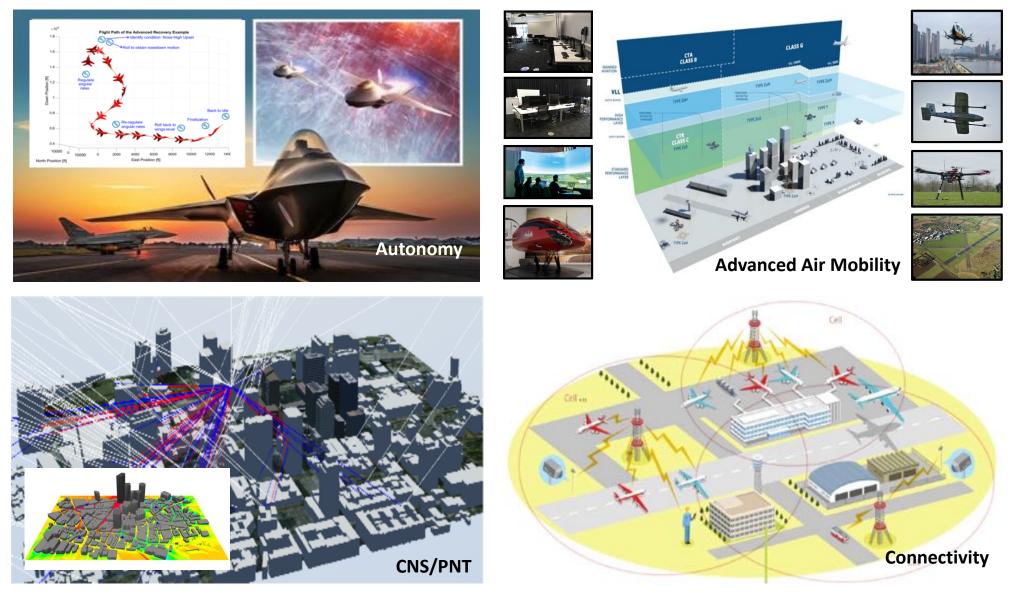
Towards Trustworthy Autonomy:

How AI can help address fundamental learning and adaptation challenges?

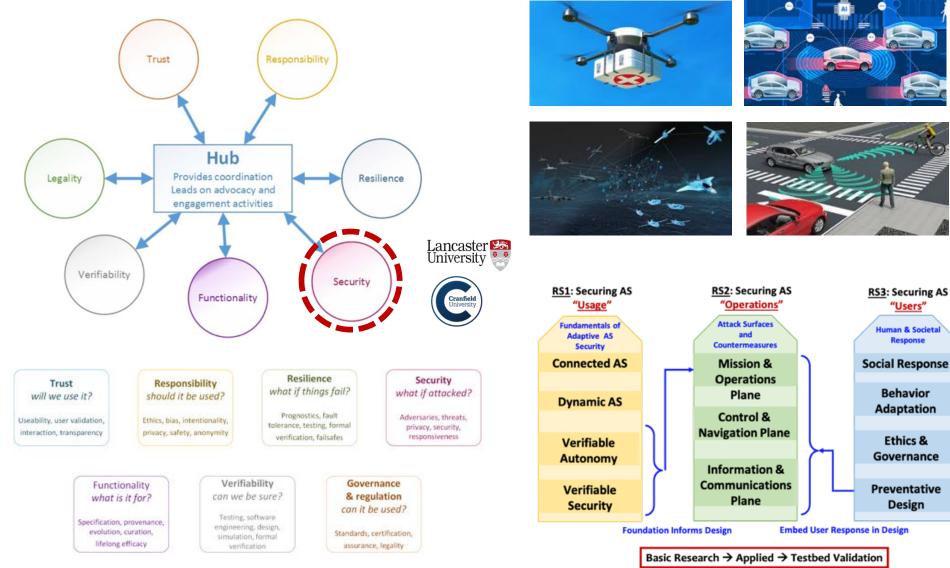
Gokhan Inalhan BAE Systems Chair Professor of Autonomous Systems and Artificial Intelligence

www.cranfield.ac.uk

Autonomy & Al Research Theme



EPSRC Trustworthy Autonomous Systems Research Nodes

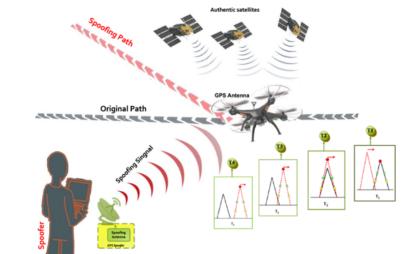


Trustworthy Autonomous Systems(TAS) Node on Security : The Control Challenge

- Autonomous Systems rely on the ability to conduct run time adaptations of control decisions over attacks or "perceived" attacks:
 - Adversaries
 - Physical
 - Information-plane
 - Information and dynamic environment uncertainties
 - Degraded performance
 - CNS and Infrastructure
 - Actuators
- How to do this in a "trustworthy" fashion in a "learning-enabled context"?
 - Safe
 - Secure
 - Reliable

Evolution of Attacks or "Perceived" attacks

- Sensing and COMM errors
- Loss of an actuator
- Environmental conditions
 - Wind
- Electronic Attacks
 - Jamming
 - Spoofing
- Electromagnetic deception
 - false/duplicate target generation

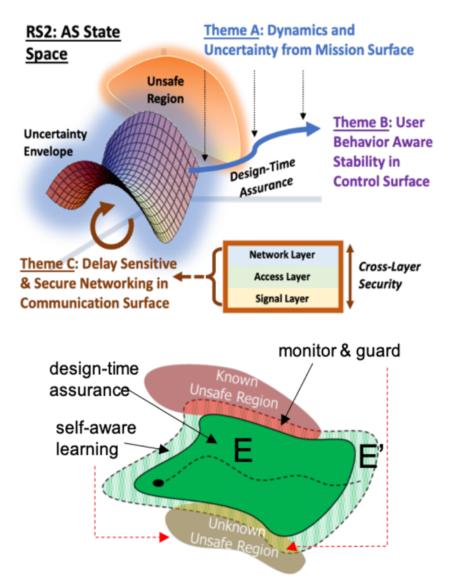


Target image: race car

onature

- Generative Adversarial Networks
 - DNN perception and classification
- Injecting false patterns into data

Key cornerstones in AI-Driven Design

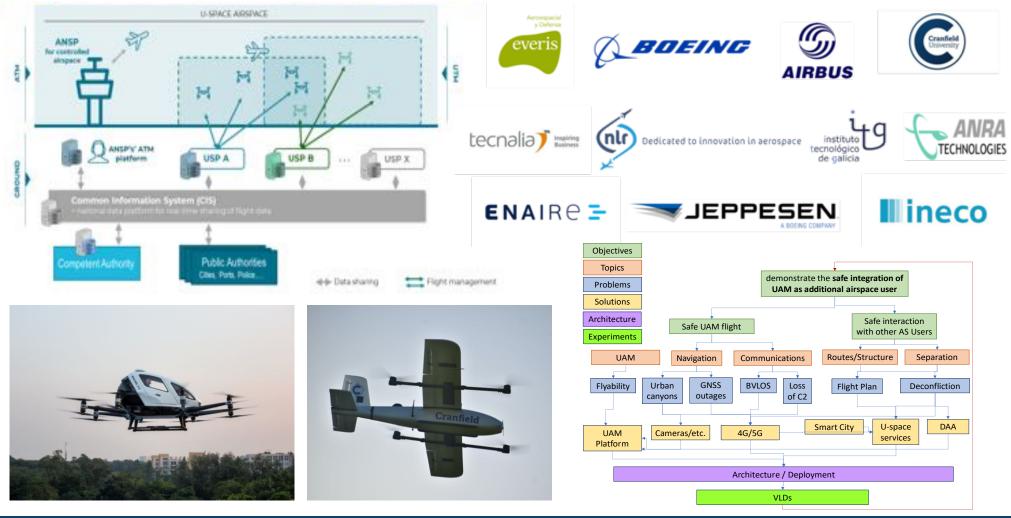


- Provide quantifiable safety and feedback to the mission surface when the limits of secure controllability are compromised within a time horizon under current policies and adversarial situations.
- Key Solution Cornerstones in Learning-Enabled Context
 - Interpretability => Explainable and Trustworthy Al
 - Continual Assurance => Dynamic Verification & Validation
 - Adaptive Security Strategies

Adaptive Security Strategies

Air Mobility Urban - Large Experimental Demonstrations (AMU-LED)

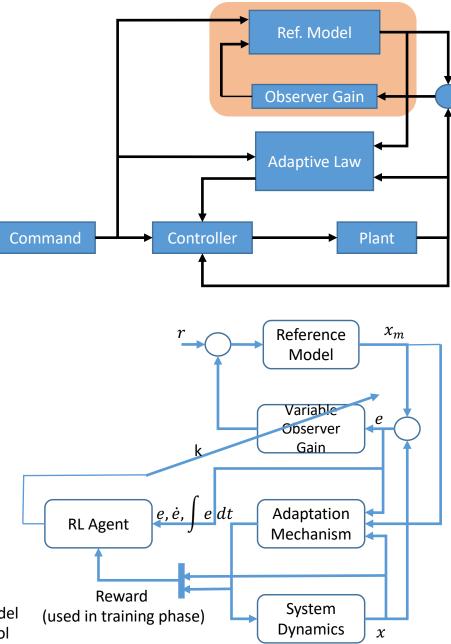
• Europe's main AAM demonstration project with CORUS XUAM (2021-2022)



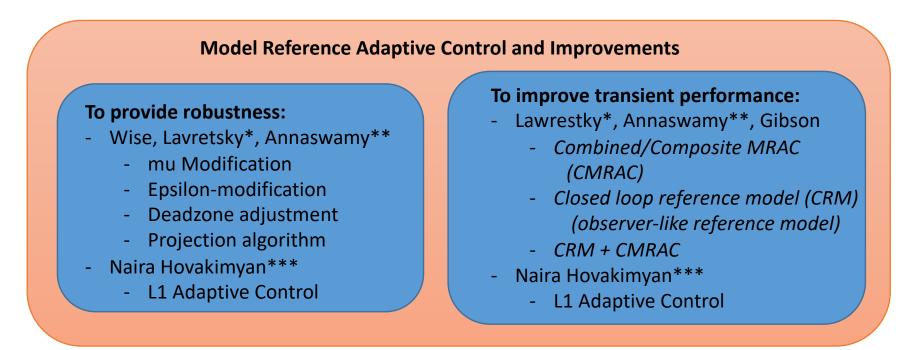
Adaptive Security Strategies

- Deep Reinforcement Learning Based Adaptive Controls
 - Learn adaptation strategy through observation between reference model and the reality

Yuksek B, Inalhan G. Reinforcement Learning Based Closed-loop Reference Model Adaptive Flight Control System Design. International Journal of Adaptive Control and Signal Processing. 2020;1–21.



State-of-Art Outlook



- Trade-off in adaptive control systems between;
 - Improved transient performance vs decreased convergence speed of adaptation parameters.

^{*}Lavretsky, E. and Wise, K. A., Robust and Adaptive Control, Springer, London, 2013.

^{**}Narendra, K. S. and Annaswamy, A. M., *Stable Adaptive Systems*, Dover Publications, 2012.

^{***}Hovakimyan, N. and Cao C., *L*1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation, Society for Industrial and Applied Mathematics, 2010.

MRAC vs CRM

- Model Reference Adaptive Control (MRAC)
 - A universal observation in adaptive systems:
 - Convergent, yet oscillatory adaptation behavior in the presence of modeling errors.
 - Speed of adaptation can be increased by increasing the adaptation gain at the cost of increased oscillation frequency.
- MRAC with Closed-loop Reference Model (CRM)
 - Transient performance is improved.
 - Unlike the MRAC structure, Luenberger-like reference model is used in CRM adapitve systems*.

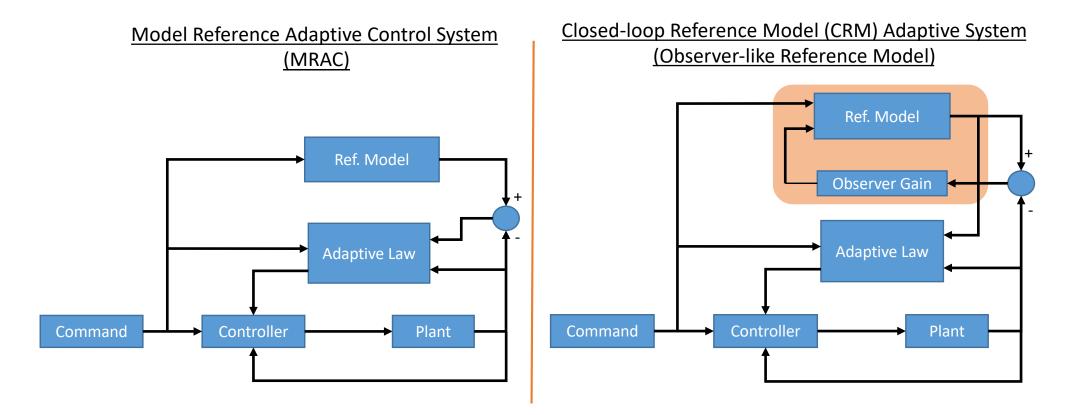
$$\dot{x}_{ref} = A_{ref} x_{ref} + L_v (x - x_{ref}) + B_{ref} y_{cmd}$$

Error Feedback Term

*Eugene Lavretsky and Kevin A. Wise, *Robust and adaptive control* (pp. 317-353), Springer, London, 2013.

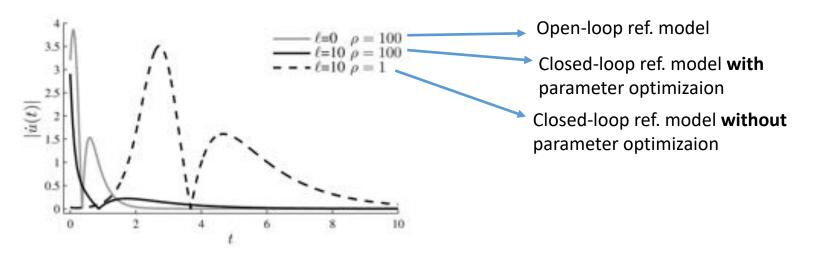
CRM Adaptive Control Systems Implementation

General Scheme of the MRAC and CRM-Adaptive Systems



CRM Adaptive Control Systems Double Edge Sword

- Another important feature of the CRM-adaptive systems is <u>water-bed</u> <u>effects</u>
 - A badly chosen design parameters (learning rate and observer gain) can significantly worsen the adaptive system performance in terms of $\dot{u}(t)$

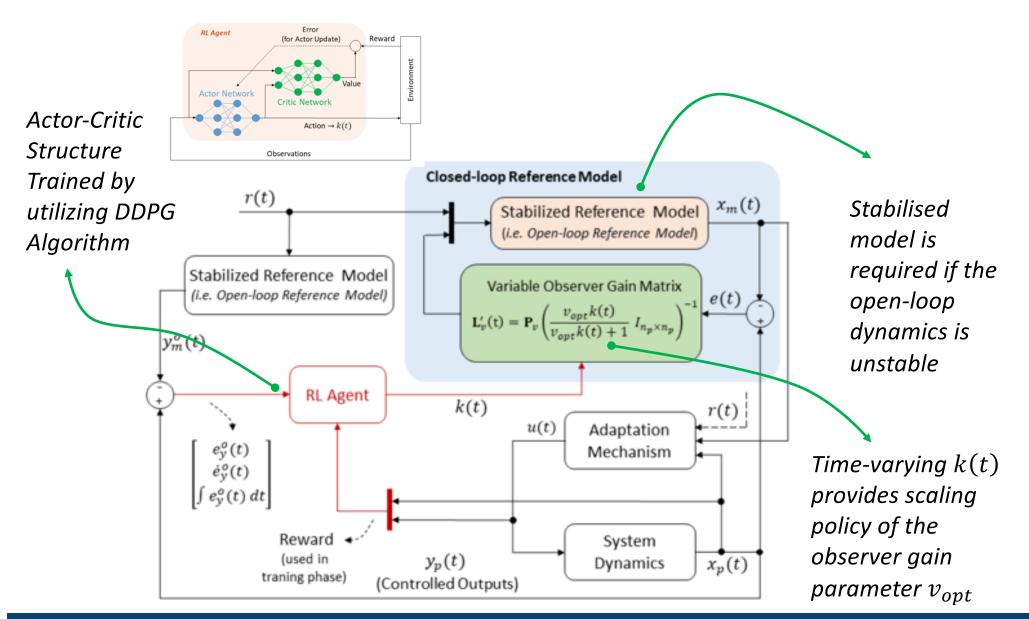


Travis E. Gibson, Anuradha M. Annaswamy, and Eugene Lavretsky. "Adaptive systems with closed-loop reference-models, part I: Transient performance." *2013 American Control Conference*. IEEE, 2013.

CRM Adaptive Control Systems

- CRM-Adaptive Systems with <u>Fixed Observer Gain</u> :
 - Small amplitude $L_v =>$ High frequency oscillation
 - Large amplitude $L_v =>$ Slow Dynamics
- Trade-off in CRM-adaptive systems between;
 - Improved transient performance vs decreased convergence speed of adaptation parameters.
- Why do not we use <u>Variable Observer Gain</u>?
 - Large amplitude L_v is used in the initial phase of the adaptation process => to improve the transient dynamics
 - Small amplitude L_v is used after the adaptation process is completed => to speed up the system response
 - Can we learn the adaptation policy of the observer gain magnitude by using Reinforcement Learning?
 - <u>RL-CRM Adaptive Control Systems</u>

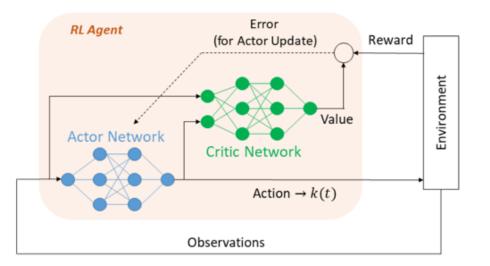
Yuksek B, Inalhan G. Reinforcement Learning Based Closed-loop Reference Model Adaptive Flight Control System Design. International Journal of Adaptive Control and Signal Processing. 2020;1–21.



Reinforcement Learning - CRM Adaptive Control System

Learning of RL-CRM Adaptive Control Systems

- Learning algorithm is Deep Deterministic Policy Gradient (DDPG)
- Agent is based on an actor critic neural network structure



Additional questions about actor-critic agent:

• Can we use the trained agent on another platform which has similar mechanical structure but different dynamical parameters? Is <u>transfer learning method</u> a suitable solution to improve the performance of the trained RL agent on another platform?

NN and Reward Function Design for RL-CRM

Neural Network Parameters

Network	Parameter					
Actor	Number of Hidden Layers	1				
	Number of Nodes in Hidden Layers	10				
	Activation Functions	Tanh				
	Learning Rate	0.002				
	Gradient Threshold	1				
Critic	Number of Obs. Path Hidden Layers	2				
	Number of Nodes in Obs. Path Hidden Layers	10				
	Number of Action Path Hidden Layers	1				
	Number of Nodes in Action Path Hidden Layers	10				
	Activation Functions	Tanh				
	Learning Rate	0.002				
	Gradient Threshold	1				

• Reward Function:

 $R(t) = w_1 R_p(t) + w_2 R_{e_v}(t) + w_3 R_u(t) + w_4 R_{e_{emd}}(t) + w_5 R_o(t)$

$$\begin{split} R_{p}(t) &= \begin{cases} -1, & \text{if } \|y_{p}(t)\|_{\infty} \geq 0.105\\ 0, & \text{otherwise} \end{cases}\\ R_{e_{y}}(t) &= \begin{cases} 4, & \text{if } |e_{y}(t)| \leq 0.0005\\ 0, & \text{otherwise} \end{cases}\\ R_{u}(t) &= \begin{cases} 2, & \text{if } |\dot{u}(t)| \leq 0.02\\ 0, & \text{otherwise} \end{cases}\\ R_{e_{end}}(t) &= \begin{cases} 2, & \text{if } |e_{y_{end}}(t)| \leq 0.01 \text{ and } t \geq 0.3 \text{ sec}\\ 0, & \text{otherwise} \end{cases}\\ R_{o}(t) &= \begin{cases} 1, & \text{if } |e_{y}^{o}(t)| \leq 0.02\\ 0, & \text{otherwise} \end{cases}\\ R_{o}(t) &= \begin{cases} 1, & \text{if } |e_{y}^{o}(t)| \leq 0.02\\ 0, & \text{otherwise} \end{cases}\\ w_{i} &= 1 \quad \forall i \in \{1, 2, 3, 4, 5\} \end{split}$$

Ability to span the whole Pareto-optimal frontier across millions of different scenarios Including failures and variations.

Mathematical Model

$$\dot{q} = M_q q + M_{\delta_e} (\delta_e + f(q))$$

 M_q : Vehicle pitch damping M_{δ_e} : Elevator effectiveness δ_e : Control input f(q): Inherent uncertainties in the helicopter dynamics

$$f(q) = -0.01 \tanh\left(\frac{360}{\pi}q\right) = \theta \Phi(q)$$

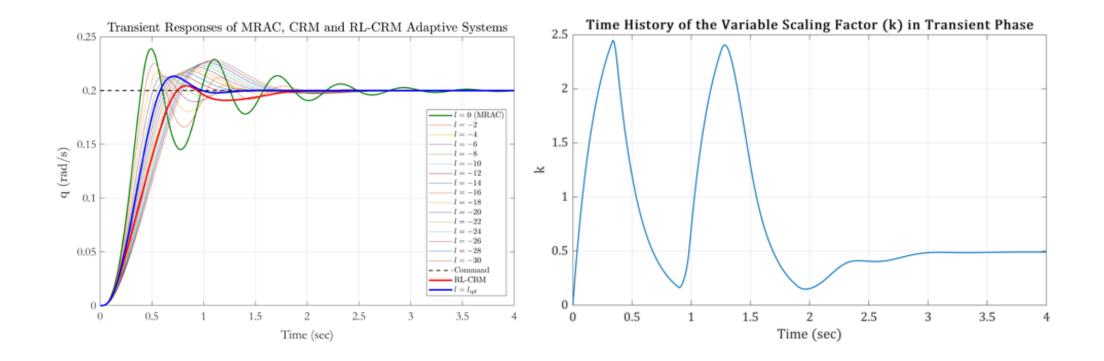
heta: Unknown constant $\Phi(q)$: Known regressor vector

Pitch Dynamics Model of a Transport Helicopter in Hover Flight

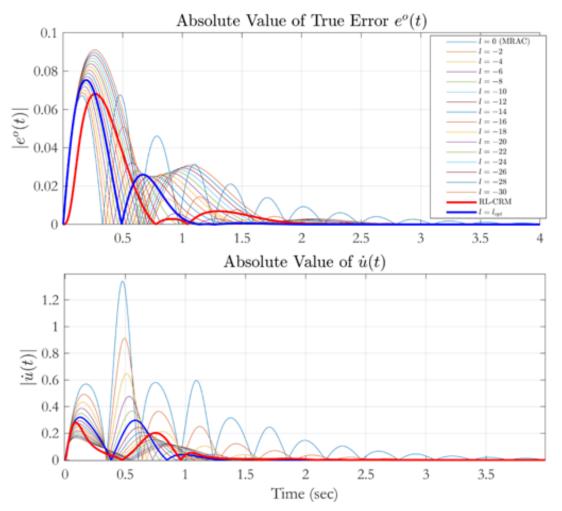
(Lavretsky, 2013, p. 270)

*Eugene Lavretsky and Kevin A. Wise, *Robust and adaptive control*, Springer, London, 2013.

• Step Response Comparison of MRAC, CRM and RL-CRM



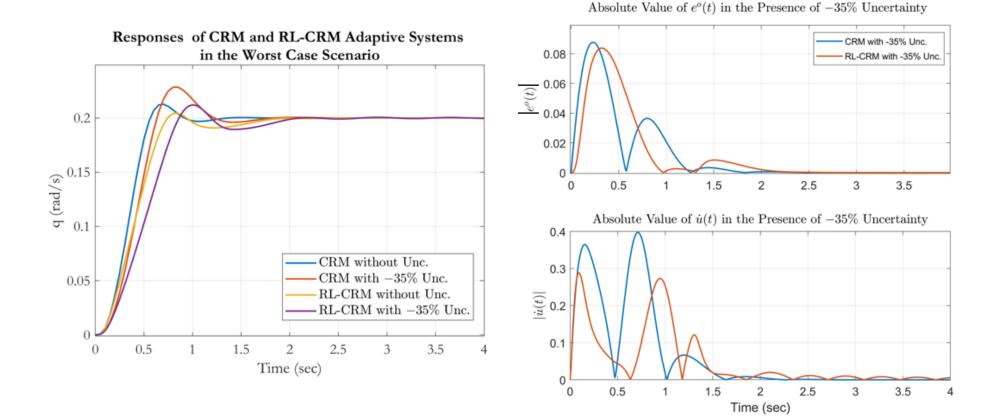
• Water-Bed Effect Comparison on MRAC, CRM and RL-CRM



- 500-run Monte-Carlo Analysis for $\pm 35\%$ Parametric Uncertainty on M_q and M_{δ_e}

Performance Metrics	MRAC	CRM	Improvement (%)	RL-CRM	Improvement (%)
$\ \dot{K}_x\ $	15.2114	3.7341	75.4520	2.4489	83.9008
$\ \dot{K}_r\ $	18.4647	7.8298	57.5958	5.5146	70.1344
. 	0.0888	0.0338	61.9369	0.0207	76.6892
$\ y_m\ _{\infty}$	0.2	0.2064	-3.2	0.2	2-3
ey	0.4616	0.1957	57.6039	0.1379	70.1256
e_v	0.4616	0.3928	14.9047	0.3886	15.8145
<i>u</i>	6.5704	2.0811	68.3262	1.4163	78.4290

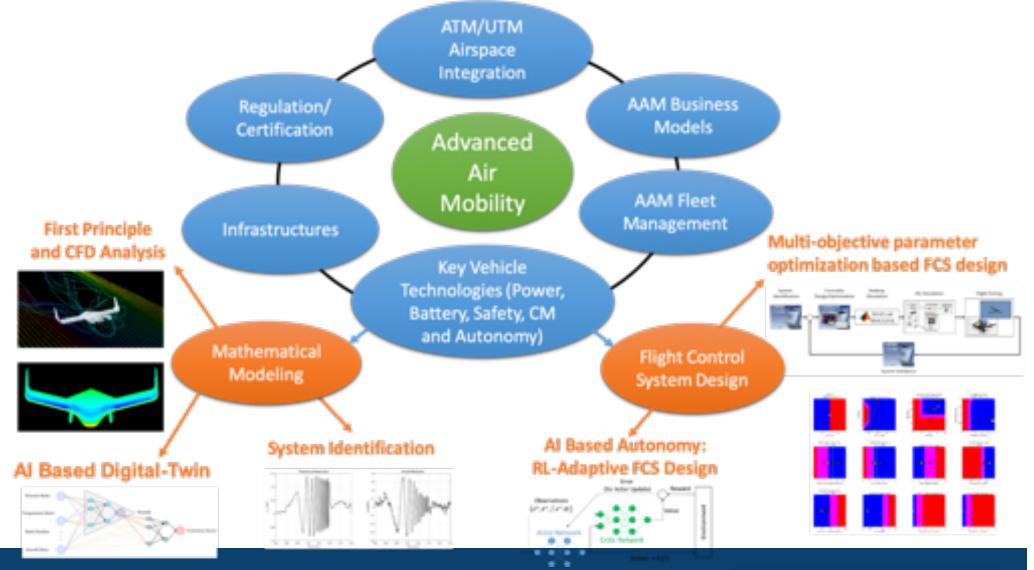
• The Worst Case Analysis for -35% Parametric Uncertainty on M_q and M_{δ_e}



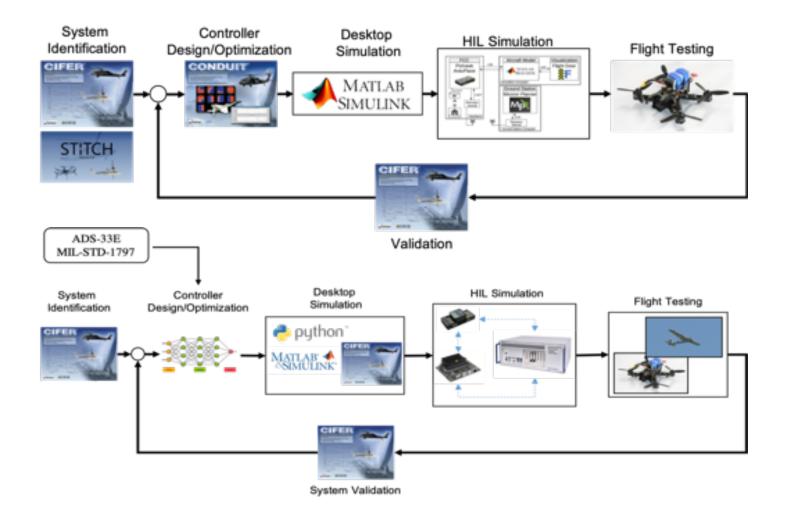
• The Worst Case Analysis for -35% Parametric Uncertainty on M_q and M_{δ_e}

Performance Metrics	MRAC	CRM	Improvement (%)	RL-CRM	Improvement (%)
$\ \dot{K}_x\ $	19.7655	4.9225	75.0955	3.4801	82.3931
<i>Ŕ</i> ,	22.9284	9.4137	58.9431	6.4318	71.9483
 $\dot{\hat{ heta}}$	0.1103	0.0407	63.1010	0.0246	77.6972
$\ y_m\ _{\infty}$	0.2	0.2171	-8.5500	0.2005	-0.2500
e _y	0.5732	0.2353	58.9498	0.1608	71.9470
$\ e_y^o\ $	0.5732	0.5101	11.0084	0.5214	9.0370
<i>ù</i>	8.5403	2.6274	69.2353	1.8001	78.9223

Major Challenges in Advanced Air Mobility Concept and Our Autonomy Focus

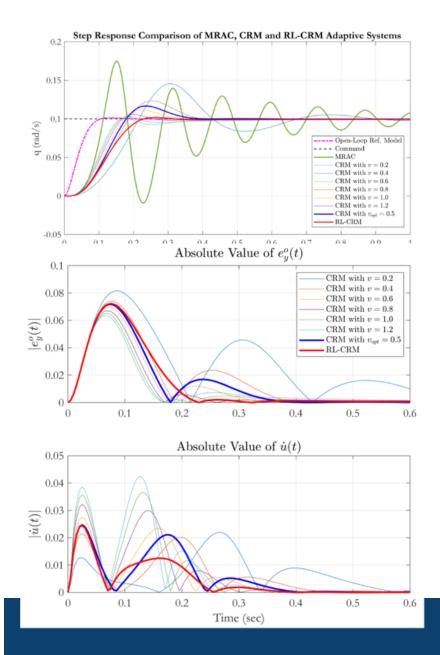


Desktop-to-Flight Design Workflow*



*Tischler, M. B., Berger, T., Ivler, C. M., Mansur, M. H., Cheung, K. K., and Soong, J. Y., "Practical Methods for Aircraft and Rotorcraft Flight Control Design: An Optimization-Based Approach," AIAA education series, 2017.

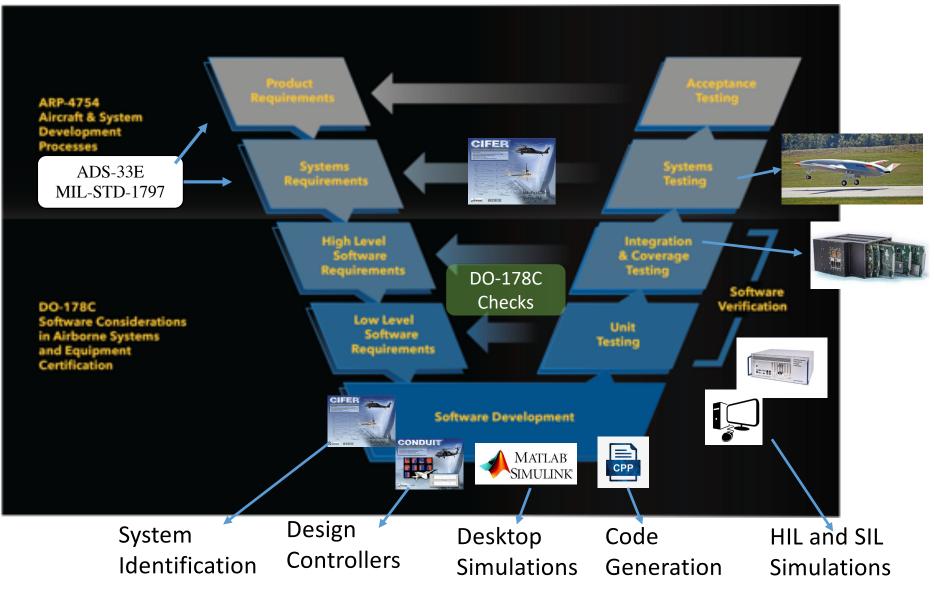
Reliable performance under large variations



Performance Metrics	MRAC	CRM	Improvement (%)	RL-CRM	Improvement (%)
$\ \dot{K}_x\ $	15.2114	3.7341	75.4520	2.4489	83.9008
$\ \dot{K}_r\ $	18.4647	7.8298	57.5958	5.5146	70.1344
.	0.0888	0.0338	61.9369	0.0207	76.6892
$\ y_m\ _{\infty}$	0.2	0.2064	-3.2	0.2	S-3
$\ e_y\ $	0.4616	0.1957	57.6039	0.1379	70.1256
e_y	0.4616	0.3928	14.9047	0.3886	15.8145
4	6.5704	2.0811	68.3262	1.4163	78.4290

27

Towards Certification of Hybrid (AI/Classical) Controllers

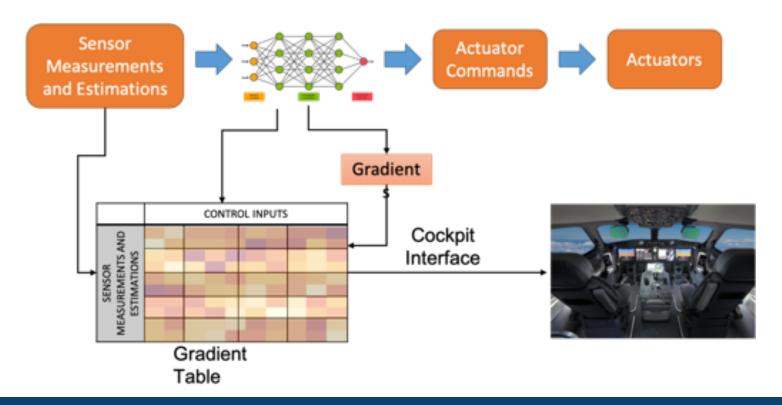


Next Steps....

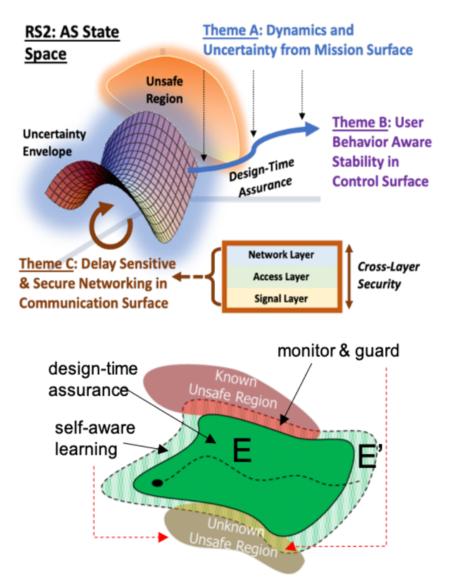
- Design and VVQC for AI-Driven Safety Critical Systems
 - Extensive usage of synthetics and digital-twins
- Reinforcement Learning in Uncertain Environments with Decentralized Decision-makers
 - Fusion of Tree-based decision algorithms and RL with learned models
 - Survivability and Lethality
- Human-Machine Teaming
 - Hybrid-system models as descriptive for behaviour taxonomy

Next Steps...

- Explainable AI for Reinforcement Learning (XAI-RL)
 - Asynchronous Advantage Actor-Critic (A3C)
 - Explanation (Visualization) Methods
 - GradCam



Key cornerstones in AI-Driven Design

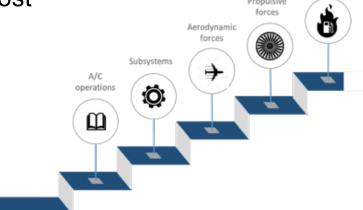


- Provide quantifiable safety and feedback to the mission surface when the limits of secure controllability are compromised within a time horizon under current policies and adversarial situations.
- Key Solution Cornerstones in Learning-Enabled Context
 - Interpretability => Explainable and Trustworthy Al
 - Continual Assurance => Dynamic Verification & Validation
 - Adaptive Security Strategies

Continual Assurance: Dynamic Verification and Validation

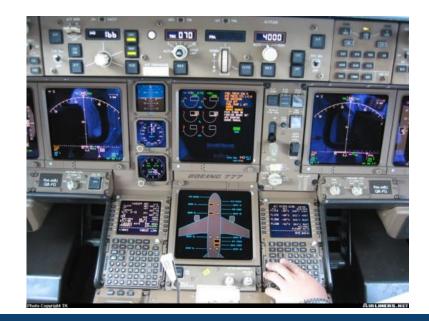
The major challenge of commercial flight planning

- Key factors (and uncertainty) in commercial flight planning
 - Wind
 - Tail-number specific fuel consumption
- Essentially "the cost" boils down to fuel usage/cost

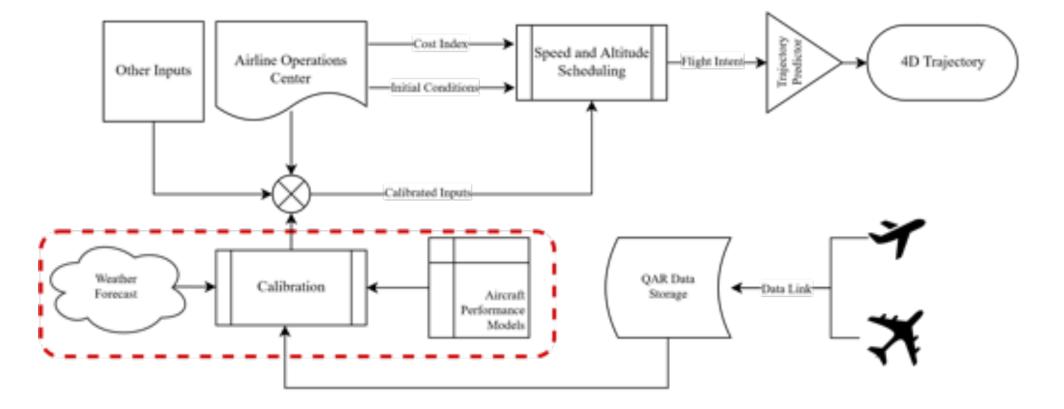


- Significant impact towards "sustainable aviation" concept
 - Cost
 - Emissions

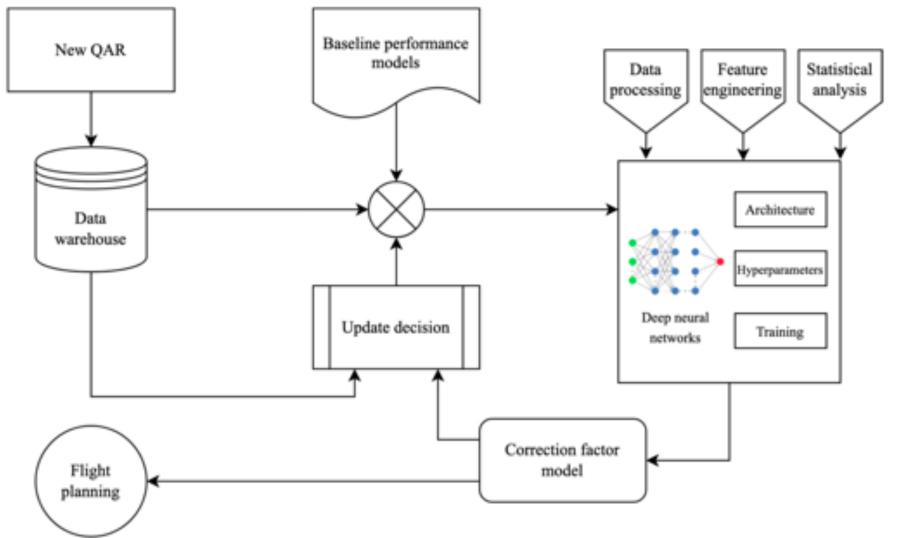
JetPlanner Pro/ FlitePlan Core (Jepp/Boeing)



Aircraft Performance and Wind Calibration Scheme



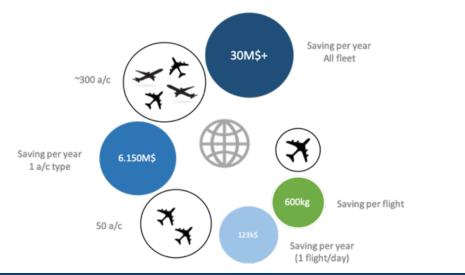
Developing Digital-Twin Performance Models

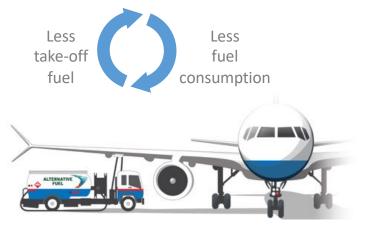


M. Uzun, M. U. Demirezen, E. Koyuncu, and G. Inalhan, "Design of a hybrid digital-twin flight performance model through machine learning," in *2019 IEEE Aerospace Conference*. IEEE, 2019, pp. 1–14.

Digital-Twin Aircraft Performance Model

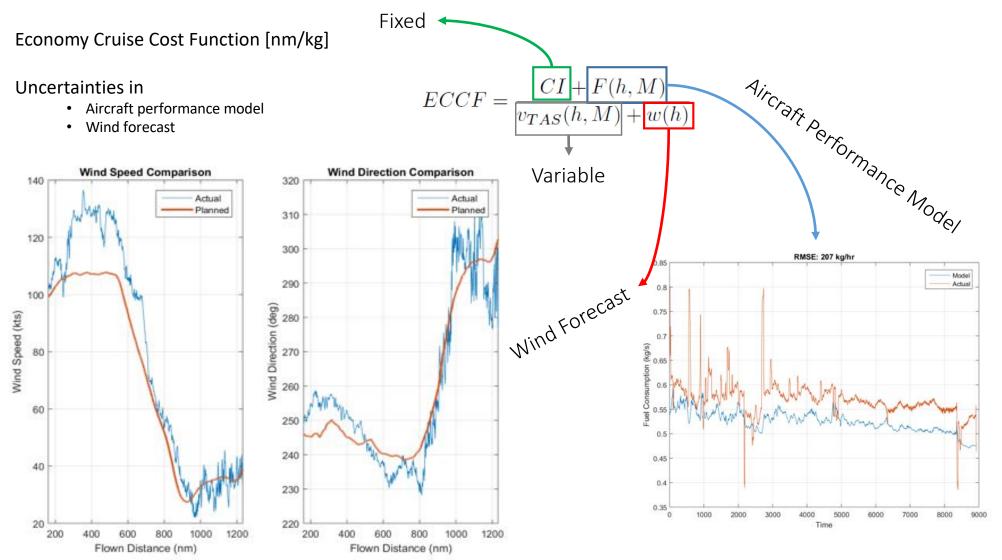
- Accurate trip fuel calculation.
- Why high precision digital twins are important?
 - High fidelity performance model means correct estimation of take-off fuel weight.
 - Less take-off fuel stands for lest take-off weight, hence less total fuel consumption.
 - The ratio is approximately 3/1 (take-off gross weight / take-off fuel) for long haul and 6/1 for short haul flights.
 - Example B777-300ER: 322 tons / 99 tons / 11 h
 - Example B737-800: 66 tons / 11 tons / 3 h





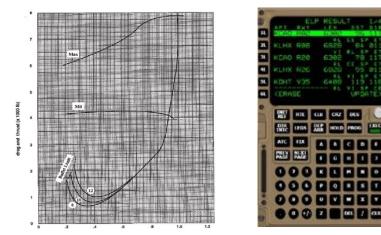
الأتحاك

Fundamental behind our solution



State-of-art in Performance Modeling

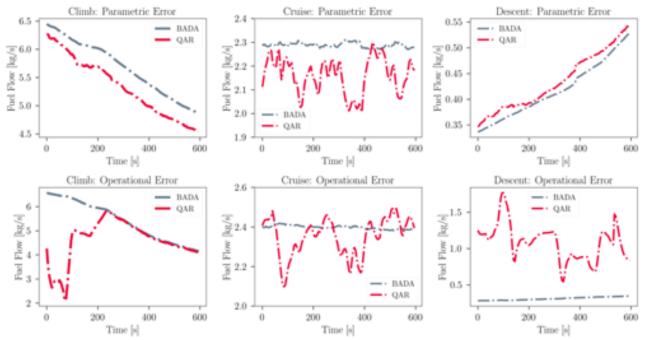
- Top aircraft performance models widely used in real world operations:
 - Aircraft manufacturer's models (highest fidelity?):
 - Performance charts to be utilized in ground based planning tools.
 - Flight Management Computers.
 - Look-up tables.
 - Generic. Only customization is through performance factor which is calculated by aging of aircraft.
 - Boeing's BPS (Boeing Performance Software) INFLT (In flight)
 - Airbus' PEP (Performance Engineer's Program)
 - Eurocontrol's BADA (Base of Aircraft Data) Family 3
 - BADA Family 4
- BPS and PEP are composed of look-up tables.
- BADA4 is a result of curve fitting to the synthetic data generated by BPS and PEP.
- BADA3 is based on empirical approaches.
- They are designed for "zero" condition. However, aircraft tend to deviate from their original performances.
 - Operating at different regions, routes.
 - Maintenance.



LTBR (F)	(F) 106 0		130	3011
ALTN	DIST	TIME	FL	FUEL
CI: 46	TRO	TROPO:31710		
LDG ELEV:	PRF	PRF FACTOR%:2.9		
KORD/LTBA				
FMS INIT	LOAD:	142		
REMF:	68	58 MIN	DIV:	6101
ELDW:	2264	81 MLDI	W:(S)	251290
ETOW:	3026	79 MTO	W:(S)	351534
EZFW:	2196	23 MZFI	W:(S)	237682
		PAY	LOAD:	46054

State-of-art in Performance Modeling

- We observe two types of discrepancies:
 - Operational
 - In BADA based trajectory predictions, a single type of thrust setting is assumed: Maximum climb for climb mode, Low-idle for descent mode.
 - Accelerations during cruise also cause differences.
 - Parametric
 - Projected as bias from the actual fuel flow.

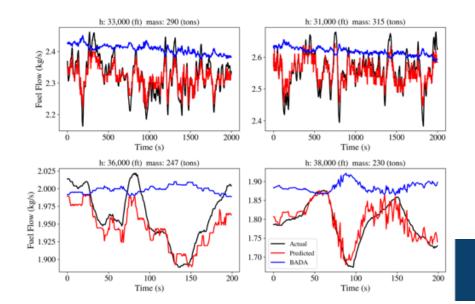


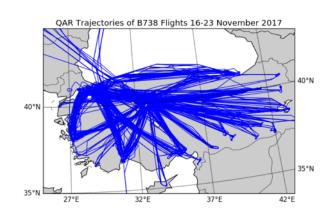
Developing Tail Number Specific Digital-Twin Performance Models

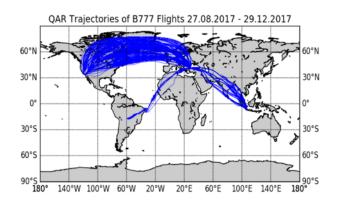
- Proposed network: Climb: Throttle Cruise: Throttle Descent: Throttle 145- Prodicts - Proficted [140 - 140 zz 124 --- Actual 57100 ________ 135 Pressure Ratio Ē 130 ⊇ 125 --- Actual Throttle 120Temperature Ratio 100 150 200 50 400100Data Points Data Points Data Points Climb: Fuel Flow Cruise: Fuel Flow Descent: Fuel Flow Correction Factor Predicted Mach Number --- Actual Baseline Flow Aircraft Mass 100 150 200200400 600 100 200 50 Data Points Data Points Data Points
 - Pressure ratio, temperature ratio, Mach number and aircraft mass are the baseline features that BADA, BPS and PEP use to calculate fuel flow.
 - Deep learning techniques are utilized: Mini-batch, Yogi (another version of Adam optimization), L2 regularization.
 - 98 tail-specific flights of a B777-300ER. 100k points for climb, 2M points for cruise, 150k points for descent.

Al Based Methodologies with Dynamic V&V Towards Fuel

- Aircraft: B737, B777, B787
- Data: QAR data of 10,000+ flights.
- **Methodology:** Develop Deep Neural Networks to estimate fuel flow as a function of:
 - Altitude
 - Mass
 - Temperature
 - ISA Deviation
 - Mach
- Evaluation:
 - Compare the estimated fuel flow with the actual one, on unseen flights.
 - Benchmark with other aircraft performance models.







TURKISH

AIRLINES

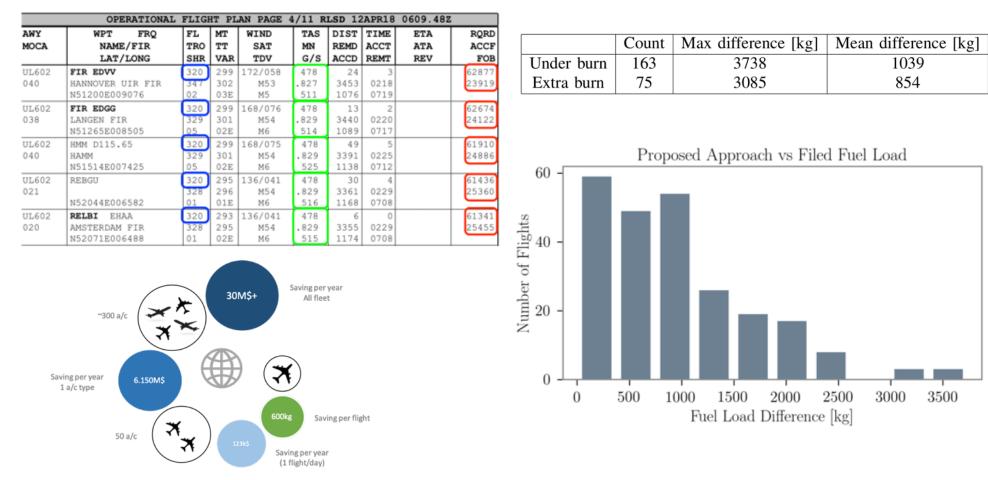
Short and long haul trajectories

	B738W (3300 flights)		B773 (100 flights)	
	MAE (kg/h)	MAPE %	MAE (kg/h)	MAPE %
BADA	162. 78	6.99	289.11	3.75
INFLT	85.11	3.62	216.41	2.78
PF Update	56.79	2.45	222.95	2.95
AI	52.46	2.27	137.15	1.46

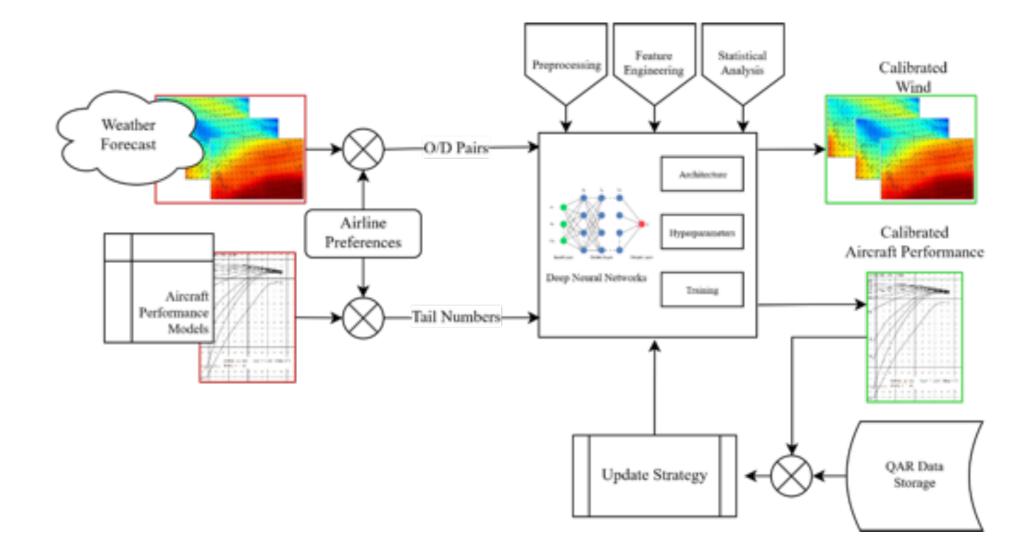
42

Application of Data-driven Models

- The updated baseline perfromance model is applied to the flight planning.
- Historical flight plans are re-generated using the update model as fuel burn estimator.

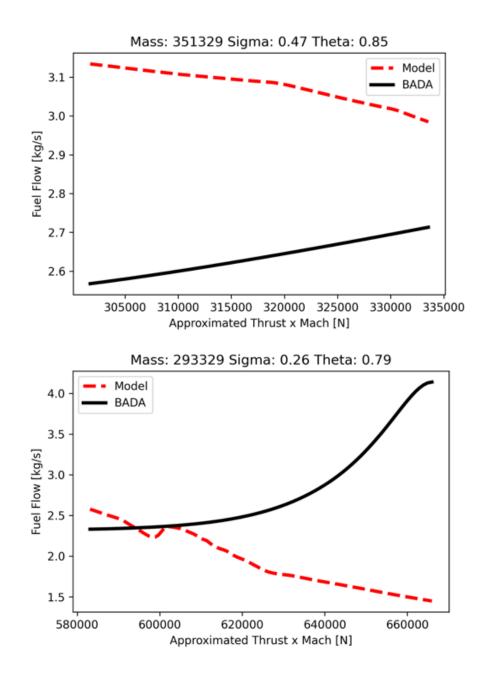


Aircraft Performance and Wind Calibration Scheme

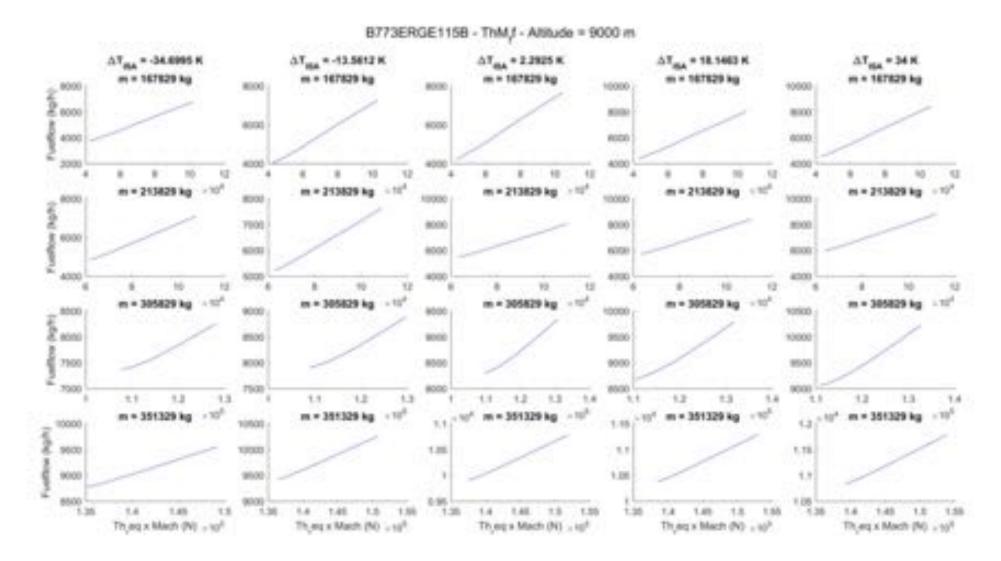


Pros and Cons

- What has been achieved:
 - State-of-the-art deep learning techniques are good at approximating non-linear mappings given a proper dataset.
 - Our fuel flow estimator represents the data quite well.
 - The models is applicable to flight planning.
- Drawbacks of ML:
 - The model «*naturally overfits*» to the data.
 - The model works fine at the seen flight regimes. What would be the fuel flow in flight conditions that are not in the data?
 - Having data from these regions would be ok, but it limits the applicability. How can we solve this without data?



Physics-guided Neural Networks



These plots are outpus of Boeing Performance Software for cruise flight

Physics-guided Neural Networks

- The labeled data do not cover the complete envelope.
- Include a physics based constraint to the optimization problem, so that the model also learns that physical intuition. It needs to be implementable to the loss function [1].
- In our case, the physical guidance for cruise flight is the following equation:

$$F \propto \frac{M}{\sqrt{\theta}} \left(a_1 M^2 + a_2 \frac{m^2}{M^2 \delta^2} \right)$$

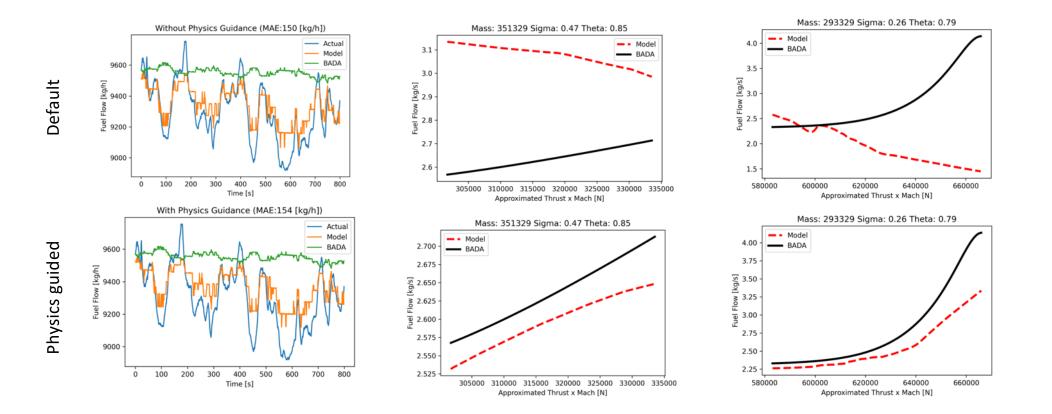
- Which stands for that fuel flow is proportional to the thrust required multiplied by the Mach number. Thrust required is approximated through this equation.
- Any negative prediction of fuel flow is penalized.
- Final loss function is:

$$J = \lambda_1 MSE(y_{actual}, y_{pred}) + \lambda_2 J_{phy} + \lambda_3 J_{sign}$$

Uzun M, Demirezen MU, Inalhan G. Physics Guided Deep Learning for Data-Driven Aircraft Fuel Consumption Modeling. Aerospace. 2021; 8(2):44.

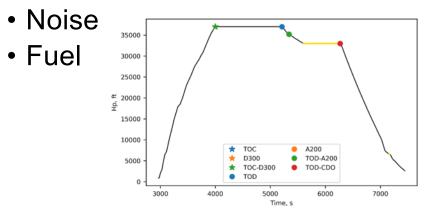
Physics-guided Neural Networks

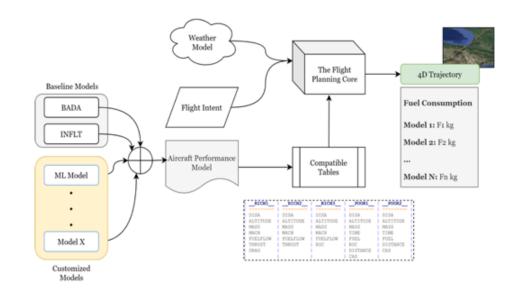
What difference does it make?



Next Steps....

- Aircraft performance calibration and events from surveillance data
 - Aircraft Health Monitoring
- Advanced flight planning
 - High precision integrated solution
 - Emission sensitive
 - Noise sensitive
- Advanced CCO/CDO







Further thanks to some key researchers @ Autonomy & AI Theme

- Dr. Burak Yüksek (TAS, GNC, AI)
- Dr. Mevlüt Uzun (AI, Future Air Mobility)
- Dr. Yan Xu (ATM/UTM)

www.cranfield.ac.uk