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Scope of the call – Research Nodes for the TAS 
programme 
This call document is seeking outline applications for the research nodes only 
(outline stage).  

UKRI expects to fund seven research nodes. These nodes will undertake 
fundamental, creative, multi- and interdisciplinary research in a number of areas 
of current unmet need. Each node will be expected to address a defined research 
challenge in-depth, focusing on one of the following: trust, responsibility, 
resilience, security, functionality, verifiability and governance & regulation.  

The nodes will be expected not to focus on specific sectorial applications, but 
instead take a cross-cutting multidisciplinary approach to deliver fundamental 
research. It is anticipated that nodes may need to use a variety of use-cases to 
explore the impact and applicability of this fundamental research. Furthermore, 
application-oriented research may be undertaken in partnership with 
stakeholders and users of research to demonstrate how the outcomes of the 
fundamental research might be exploited in real-world and sector-specific 
contexts. For each node topic, it will be up to the applicants to set out the 
approach, research and team required to address the topic effectively. 

 
 

It is anticipated that each node will be multidisciplinary, including investigators 
from across the UKRI portfolio as appropriate. Each node may be 
multidisciplinary to a different extent depending on the challenges posed by the 
topic. Applicants for node investments will be expected to articulate the key 
challenges they intend to address within a given topic and to put together an 
appropriate multidisciplinary team to tackle these challenges.  

The nodes will be expected to work closely with the Hub to deliver the objectives 
of the programme. Similarly, the nodes will be required to complement each 
other and the Hub, undertaking research into cross-node issues in a coordinated 
and collaborative manner, avoiding duplication and maximising the benefits of 
the programme. In addition, the nodes will have access to funds distributed via a 
competitive process by the Hub to pump-prime new opportunities. These funds 
may be used to (but not limited to):  

x� Undertake risky research within, between and beyond the nodes. 
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Trustworthy Autonomous Systems(TAS) Node on 
Security : The Control Challenge
• Autonomous Systems rely on the ability to 

conduct run time adaptations of control 
decisions over attacks or “perceived” 
attacks:

• Adversaries
• Physical
• Information-plane

• Information and dynamic environment 
uncertainties 

• Degraded performance
• CNS and Infrastructure
• Actuators

• How to do this in a “trustworthy” fashion in 
a “learning-enabled context”?

• Safe
• Secure
• Reliable
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Evolution of Attacks or “Perceived” attacks

• Sensing and COMM errors
• Loss of an actuator
• Environmental conditions

• Wind
• Electronic Attacks

• Jamming 
• Spoofing

• Electromagnetic deception 
• false/duplicate target generation

• Generative Adversarial Networks
• DNN perception and classification

• Injecting false patterns into data
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Key cornerstones in AI-Driven Design

• Provide quantifiable safety and 
feedback to the mission surface 
when the limits of secure 
controllability are compromised 
within a time horizon under current 
policies and adversarial situations.

• Key Solution Cornerstones in Learning-
Enabled Context

• Interpretability => Explainable and 
Trustworthy AI

• Continual Assurance => Dynamic 
Verification & Validation

• Adaptive Security Strategies
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Adaptive Security Strategies
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Air Mobility Urban - Large Experimental 
Demonstrations (AMU-LED)

• Europe’s main AAM demonstration project with CORUS XUAM (2021-2022)

demonstrate the safe integration of 
UAM as additional airspace user
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Adaptive Security Strategies 

• Deep Reinforcement Learning Based 
Adaptive Controls

• Learn adaptation strategy through 
observation between reference 
model and the reality

Yuksek B, Inalhan G. Reinforcement Learning Based Closed-loop Reference Model 
Adaptive Flight Control System Design. International Journal of Adaptive Control 
and Signal Processing. 2020;1–21. 
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State-of-Art Outlook

• Trade-off in adaptive control systems between;
• Improved transient performance vs decreased convergence speed of 

adaptation parameters.

Model Reference Adaptive Control and Improvements 

To provide robustness:
- Wise, Lavretsky*, Annaswamy**

- mu Modification
- Epsilon-modification
- Deadzone adjustment
- Projection algorithm 

- Naira Hovakimyan***
- L1 Adaptive Control

To improve transient performance:
- Lawrestky*, Annaswamy**, Gibson

- Combined/Composite MRAC 
(CMRAC)

- Closed loop reference model (CRM) 
(observer-like reference model)

- CRM + CMRAC
- Naira Hovakimyan***

- L1 Adaptive Control

*Lavretsky, E. and Wise, K. A., Robust and Adaptive Control, Springer, London, 2013.
**Narendra, K. S. and Annaswamy, A. M., Stable Adaptive Systems, Dover Publications, 2012.
***Hovakimyan, N. and Cao C., ℒ1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation, Society for Industrial and 
Applied Mathematics, 2010.
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MRAC vs CRM

• Model Reference Adaptive Control (MRAC)
• A universal observation in adaptive systems:

• Convergent, yet oscillatory adaptation behavior in the presence of 
modeling errors.

• Speed of adaptation can be increased by increasing the 
adaptation gain at the cost of increased oscillation frequency. 

• MRAC with Closed-loop Reference Model (CRM)
• Transient performance is improved.
• Unlike the MRAC structure, Luenberger-like reference model is used 

in CRM adapitve systems*. 

*Eugene Lavretsky and Kevin A. Wise, Robust and adaptive control (pp. 317-353), Springer, London, 2013.
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CRM Adaptive Control Systems Implementation

• General Scheme of the MRAC and CRM-Adaptive Systems

Closed-loop Reference Model (CRM) Adaptive System
(Observer-like Reference Model)

Ref. Model

Observer Gain

Adaptive Law

PlantControllerCommand

+

-

Ref. Model

Adaptive Law

PlantControllerCommand

+

-

Model Reference Adaptive Control System
(MRAC)
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CRM Adaptive Control Systems Double Edge Sword 

• Another important feature of the CRM-adaptive systems is water-bed 
effects

• A badly chosen design parameters (learning rate and observer gain) 
can significantly worsen the adaptive system performance in terms of 
"̇($)

Open-loop ref. model

Closed-loop ref. model with
parameter optimizaion

Closed-loop ref. model without
parameter optimizaion

Travis E. Gibson, Anuradha M. Annaswamy, and Eugene Lavretsky. "Adaptive systems with closed-loop 
reference-models, part I: Transient performance." 2013 American Control Conference. IEEE, 2013.
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CRM Adaptive Control Systems
• CRM-Adaptive Systems with Fixed Observer Gain : 

• Small amplitude !" => High frequency oscillation
• Large amplitude !" => Slow Dynamics

• Trade-off in CRM-adaptive systems between;
• Improved transient performance vs decreased convergence speed of 

adaptation parameters.
• Why do not we use Variable Observer Gain ?

• Large amplitude !" is used in the initial phase of the adaptation 
process => to improve the transient dynamics

• Small amplitude !" is used after the adaptation process is completed 
=> to speed up the system response

• Can we learn the adaptation policy of the observer gain magnitude by 
using Reinforcement Learning?

• RL-CRM Adaptive Control Systems

Yuksek B, Inalhan G. Reinforcement Learning Based Closed-loop Reference Model Adaptive Flight Control System Design. 
International Journal of Adaptive Control and Signal Processing. 2020;1–21. 
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Reinforcement Learning - CRM Adaptive Control System

Stabilised 
model is 
required if the 
open-loop 
dynamics is 
unstable

Time-varying ! "
provides scaling 
policy of the 
observer gain 
parameter #$%&

Actor-Critic 
Structure 
Trained by 
utilizing DDPG 
Algorithm
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Learning of RL-CRM Adaptive Control Systems

• Learning algorithm is Deep Deterministic Policy Gradient (DDPG)
• Agent is based on an actor – critic neural network structure

Additional questions about actor-critic agent:
• Can we use the trained agent on another platform which has similar mechanical 

structure but different dynamical parameters? Is transfer learning method a suitable 
solution to improve the performance of the trained RL agent on another platform?
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NN and Reward Function Design for RL-CRM

• Neural Network Parameters
• Reward Function:

Ability to span the whole Pareto-optimal frontier across millions of different scenarios 
Including failures and variations.  
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RL-CRM Adaptive Control System Design on Scalar Pitch 
Dynamics of a Helicopter

• Mathematical Model

"̇ = $%" + $'( )* + + "

$%: Vehicle pitch damping
$'( : Elevator effectiveness
)*: Control input
+("): Inherent uncertainties in the helicopter dynamics

+ " = −0.01 tanh 360
9 " = : Φ(")

:: Unknown constant
Φ("): Known regressor vector

*Eugene Lavretsky and Kevin A. Wise, Robust and adaptive control, Springer, London, 2013.

(Lavretsky, 2013, p. 270)

Pitch Dynamics Model of a  
Transport Helicopter in 

Hover Flight
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RL-CRM Adaptive Control System Design on Scalar Pitch 
Dynamics of a Helicopter

• Step Response Comparison of MRAC, CRM and RL-CRM
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RL-CRM Adaptive Control System Design on Scalar Pitch 
Dynamics of a Helicopter

• Water-Bed Effect Comparison on MRAC, CRM and RL-CRM
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RL-CRM Adaptive Control System Design on Scalar Pitch 
Dynamics of a Helicopter

• 500-run Monte-Carlo Analysis for ±35% Parametric Uncertainty on %& and 
%'(
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RL-CRM Adaptive Control System Design on Scalar Pitch 
Dynamics of a Helicopter

• The Worst Case Analysis for −35% Parametric Uncertainty on %& and %'(
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RL-CRM Adaptive Control System Design on Scalar Pitch 
Dynamics of a Helicopter

• The Worst Case Analysis for −35% Parametric Uncertainty on %& and %'(
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Major Challenges in Advanced Air Mobility Concept and 
Our Autonomy Focus
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Desktop-to-Flight Design Workflow*

*Tischler, M. B., Berger, T., Ivler, C. M., Mansur, M. H., Cheung, K. K., and Soong, J. Y., “Practical Methods for Aircraft and
Rotorcraft Flight Control Design: An Optimization-Based Approach,” AIAA education series, 2017.
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Reliable performance under large variations
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Towards Certification of Hybrid (AI/Classical) Controllers

ADS-33E
MIL-STD-1797

System
Identification

Design 
Controllers

Desktop 
Simulations

Code
Generation

HIL and SIL 
Simulations

DO-178C 
Checks
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Next Steps….

• Design and VVQC for AI-Driven 
Safety Critical Systems

• Extensive usage of synthetics and 
digital-twins

• Reinforcement Learning in 
Uncertain Environments with 
Decentralized Decision-makers

• Fusion of Tree-based decision 
algorithms and RL with learned 
models

• Survivability and Lethality
• Human-Machine Teaming

• Hybrid-system models as 
descriptive for behaviour taxonomy  
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Next Steps…

• Explainable AI for Reinforcement Learning (XAI-RL)
• Asynchronous Advantage Actor-Critic (A3C) 
• Explanation (Visualization) Methods
• GradCam
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Key cornerstones in AI-Driven Design

• Provide quantifiable safety and 
feedback to the mission surface 
when the limits of secure 
controllability are compromised 
within a time horizon under current 
policies and adversarial situations.

• Key Solution Cornerstones in Learning-
Enabled Context

• Interpretability => Explainable and 
Trustworthy AI

• Continual Assurance => Dynamic 
Verification & Validation

• Adaptive Security Strategies
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Continual Assurance: Dynamic 
Verification and Validation
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The major challenge of commercial flight planning

• Key factors (and uncertainty) in commercial 
flight planning

• Wind
• Tail-number specific fuel consumption

• Essentially ”the cost” boils down to fuel 
usage/cost

• Significant impact towards “sustainable 
aviation” concept

• Cost
• Emissions

JetPlanner Pro/ FlitePlan Core (Jepp/Boeing)

JetPlanner Pro – Graphical Weather  

Jeppesen Proprietary - Copyright © 2016 Jeppesen. All rights reserved. 

With live graphical weather quickly identify areas of concern and 
quickly build avoid areas for rerouting
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Aircraft Performance and Wind Calibration Scheme
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Developing Digital-Twin Performance Models

M. Uzun, M. U. Demirezen, E. Koyuncu, and G. Inalhan, “Design of a hybrid digital-twin flight 
performance model through machine learning,” in 2019 IEEE Aerospace Conference. IEEE, 
2019, pp. 1–14. 
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Digital-Twin Aircraft Performance Model

• Accurate trip fuel calculation.

• Why high precision digital twins are important?
• High fidelity performance model means correct estimation of take-off fuel weight.

• Less take-off fuel stands for lest take-off weight, hence less total fuel consumption.
• The ratio is approximately 3/1 (take-off gross weight / take-off fuel) for long haul 

and 6/1 for short haul flights. 
• Example B777-300ER: 322 tons / 99 tons / 11 h
• Example B737-800: 66 tons / 11 tons / 3 h

Less
take-off
fuel

Less
fuel

consumption
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Fundamental behind our solution

Variable

Aircraft Performance Model

Wind Forecast

Fixed
Economy Cruise Cost Function [nm/kg]

Uncertainties in
• Aircraft performance model
• Wind forecast
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State-of-art in Performance Modeling

• Top aircraft performance models widely used in real world 
operations:

• Aircraft manufacturer’s models (highest fidelity?): 
• Performance charts to be utilized in ground based 

planning tools.
• Flight Management Computers.
• Look-up tables.

• Generic. Only customization is through performance factor 
which is calculated by aging of aircraft.

• Boeing’s BPS (Boeing Performance Software) - INFLT (In flight)
• Airbus’ PEP (Performance Engineer’s Program)
• Eurocontrol’s BADA (Base of Aircraft Data) Family 3
• BADA Family 4

• BPS and PEP are composed of look-up tables. 
• BADA4 is a result of curve fitting to the synthetic data generated 

by BPS and PEP.
• BADA3 is based on empirical approaches.
• They are designed for ”zero” condition. However, aircraft tend to 

deviate from their original performances.
• Operating at different regions, routes.
• Maintenance.
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State-of-art in Performance Modeling

• We observe two types of discrepancies:
• Operational

• In BADA based trajectory predictions, a single type of thrust setting is assumed: 
Maximum climb for climb mode, Low-idle for descent mode.

• Accelerations during cruise also cause differences.
• Parametric

• Projected as bias from the actual fuel flow.
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Developing Tail Number Specific Digital-Twin 
Performance Models
• Proposed network:

• Pressure ratio, temperature ratio, Mach number and aircraft mass are the 
baseline features that BADA, BPS and PEP use to calculate fuel flow. 

• Deep learning techniques are utilized: Mini-batch, Yogi (another version of Adam 
optimization), L2 regularization.

• 98 tail-specific flights of a B777-300ER. 100k points for climb, 2M points for 
cruise, 150k points for descent.
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AI Based Methodologies with Dynamic V&V Towards Fuel 
Efficiency
• Aircraft: B737, B777, B787

• Data: QAR data of 10,000+ flights.

• Methodology: Develop Deep Neural 
Networks to estimate fuel flow as a 
function of:

• Altitude
• Mass
• Temperature
• ISA Deviation
• Mach

• Evaluation:
• Compare the estimated fuel flow with 

the actual one, on unseen flights.
• Benchmark with other aircraft 

performance models.

Short and long haul trajectories

B738W (3300 flights) B773 (100 flights)

MAE (kg/h) MAPE % MAE (kg/h) MAPE %

BADA 162. 78 6.99 289.11 3.75

INFLT 85.11 3.62 216.41 2.78

PF Update 56.79 2.45 222.95 2.95

AI 52.46 2.27 137.15 1.46
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Application of Data-driven Models

• The updated baseline perfromance model is applied to the flight planning.
• Historical flight plans are re-generated using the update model as fuel burn estimator.
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Aircraft Performance and Wind Calibration Scheme
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Pros and Cons

• What has been achieved:
• State-of-the-art deep learning 

techniques are good at 
approximating non-linear 
mappings given a proper 
dataset.

• Our fuel flow estimator 
represents the data quite well.

• The models is applicable to flight 
planning. 

• Drawbacks of ML:
• The model «naturally overfits» to 

the data.
• The model works fine at the seen 

flight regimes. What would be the 
fuel flow in flight conditions that 
are not in the data?

• Having data from these regions 
would be ok, but it limits the 
applicability. How can we solve 
this without data?
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Physics-guided Neural Networks

These plots are outpus of Boeing Performance Software for cruise flight
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Physics-guided Neural Networks

• The labeled data do not cover the complete envelope.
• Include a physics based constraint to the optimization problem, so that the model also 

learns that physical intuition. It needs to be implementable to the loss function [1].
• In our case, the physical guidance for cruise flight is the following equation:

! ∝ #
θ
%&#' + %'

)'

#'δ'

• Which stands for that fuel flow is proportional to the thrust required multiplied by the Mach 
number. Thrust required is approximated through this equation. 

• Any negative prediction of fuel flow is penalized.
• Final loss function is:

+ = -&#./ 0123415 , 0789: + -'+7;< + -=+>?@A
Uzun M, Demirezen MU, Inalhan G. Physics Guided Deep Learning for Data-Driven Aircraft Fuel Consumption Modeling. Aerospace. 
2021; 8(2):44. 
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Physics-guided Neural Networks

• What difference does it make?
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Next Steps….

• Aircraft performance calibration 
and events from surveillance data

• Aircraft Health Monitoring
• Advanced flight planning

• High precision integrated 
solution

• Emission sensitive
• Noise sensitive

• Advanced CCO/CDO
• Noise
• Fuel
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Further thanks to some key researchers @ Autonomy & 
AI Theme

• Dr. Burak Yüksek (TAS, GNC, AI)
• Dr. Mevlüt Uzun (AI, Future Air Mobility)
• Dr. Yan Xu (ATM/UTM)
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