Autonomous Teams: Where Learning Meets Control

Andreas A. Malikopoulos, PhD
Professor, Civil and Environmental Engineering
Director, Information and Decision Science (IDS) Lab
Cornell University

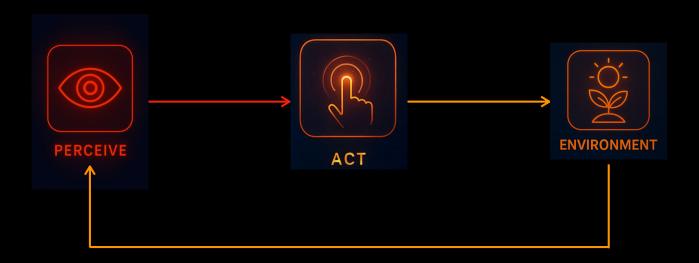
IEEE CSS TC on Smart Cities Tutorial Session: Challenges and Opportunities for Control in Smart Cities

2025 64th IEEE Conference on Decision and Control (CDC)

December 12, 2025

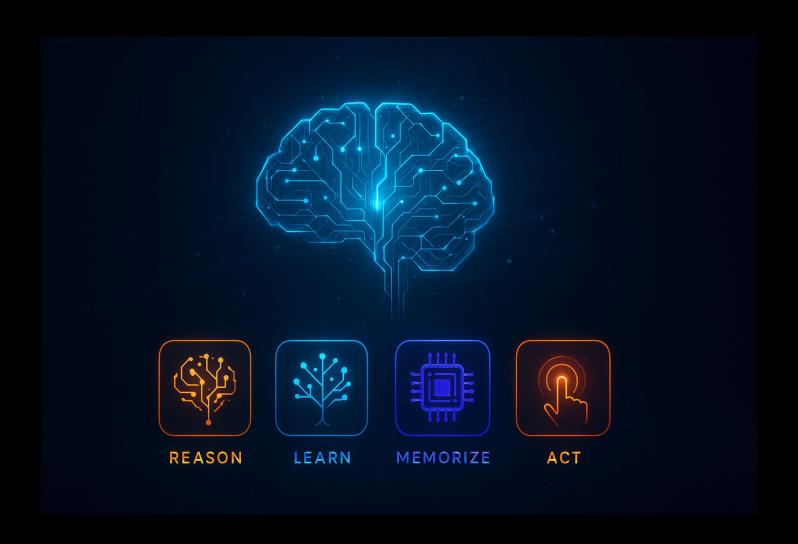
autonomy

operate without human supervision

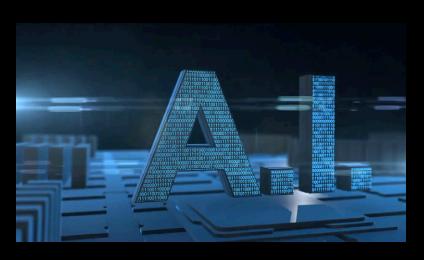


we are	heading to	o enhanc	ed auton	omy

agentic ai



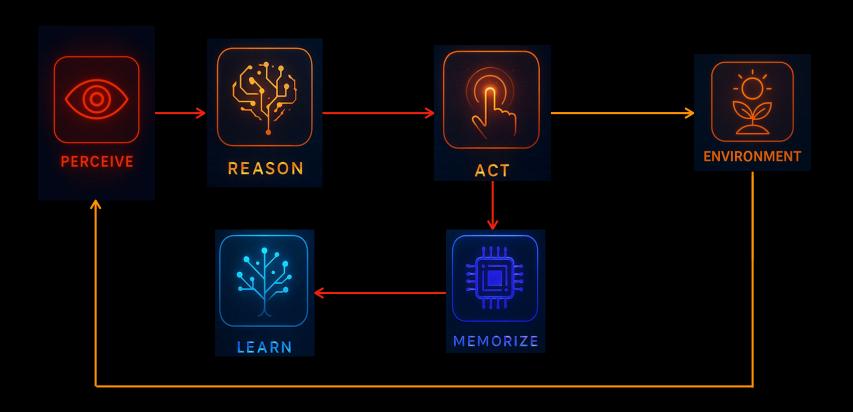
agentic ai



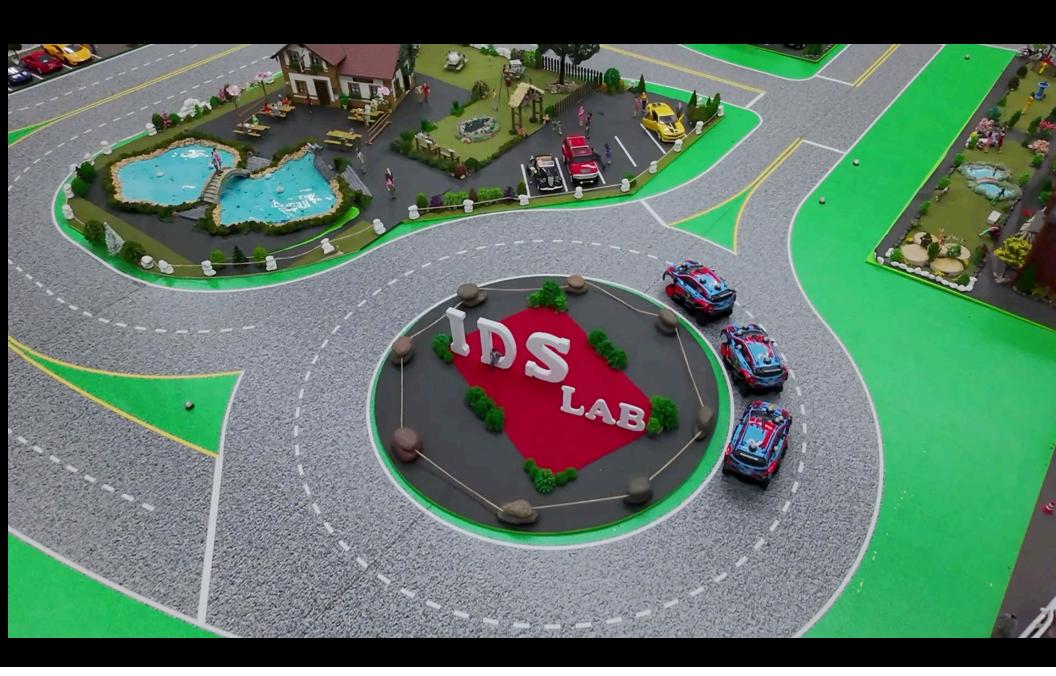


agentic ai

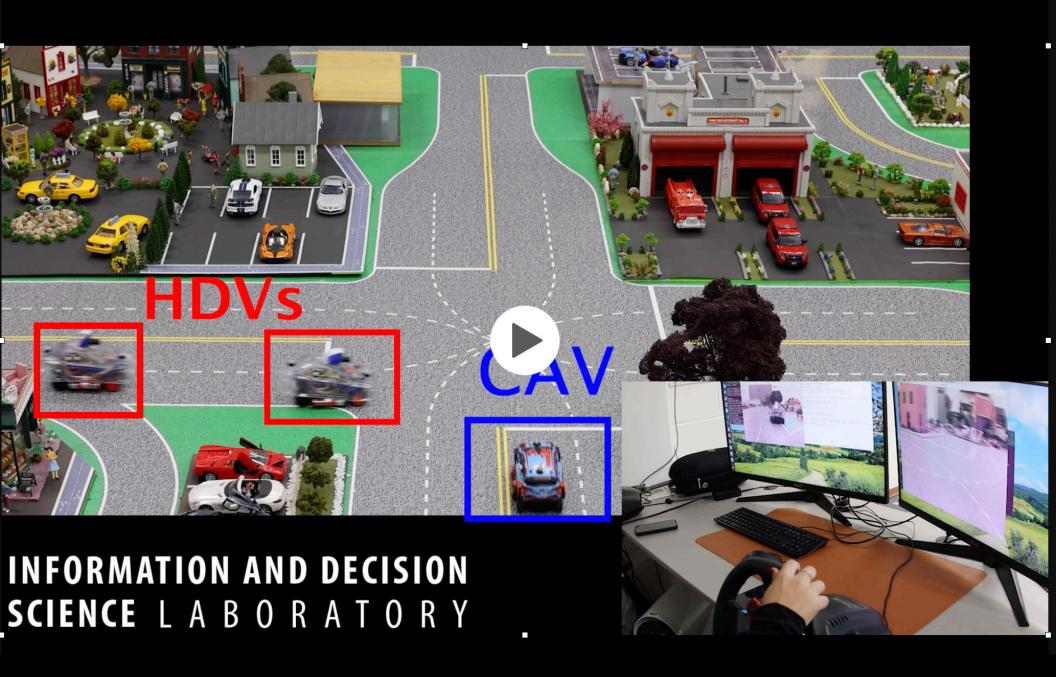
operate without human supervision



The overarching goal of the IDS Lab is to develop rigorous theories and data-driven system approaches at the intersection of learning and control to enable systems—whether vehicles, robots, or large-scale infrastructures—to operate autonomously while safely interacting with dynamic environments. Our work integrates decision—theoretic foundations with learning-based methods to endow engineered systems with the capability to reason, learn, and act in real time.



INFORMATION AND DECISION SCIENCE L A B O R A T O R Y

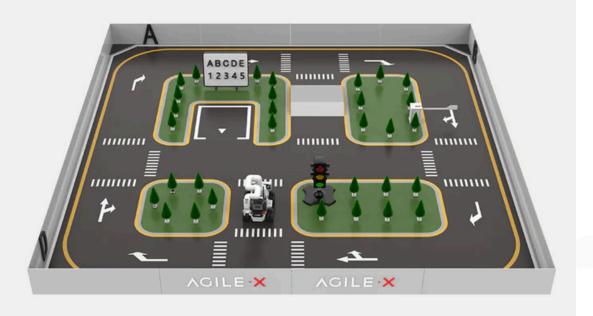


INFORMATION AND DECISION SCIENCE L A B O R A T O R Y

virtual reality driver simulation testbed

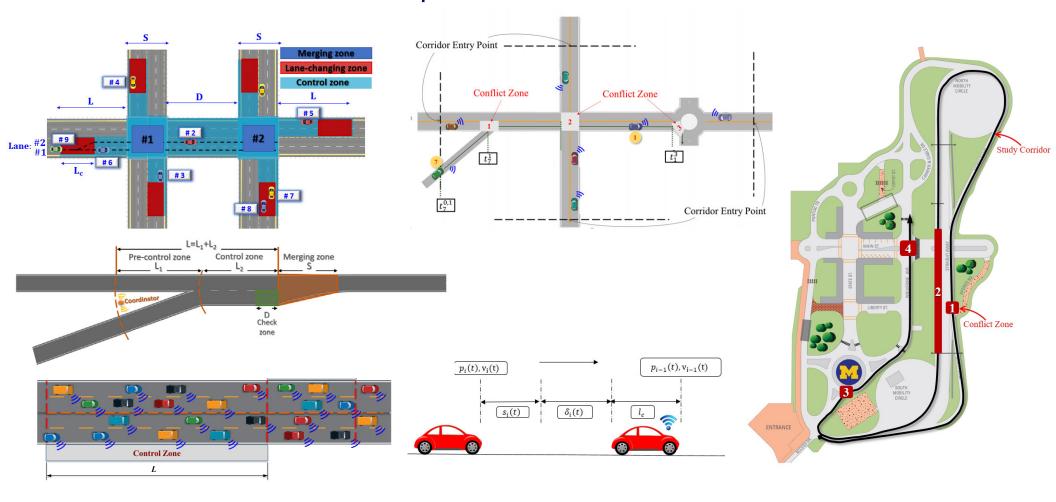
INFORMATION AND DECISION SCIENCE LABORATORY

Limos



Limos

multiple scenarios^{[1]-[6]}



- [1] Mahbub, A.M. I., and Malikopoulos, A.A., "A Platoon Formation Framework in a Mixed Traffic Environment," IEEE Control Systems Letters, 6, 1370–1375, 2022. [2] Chalaki, B., and Malikopoulos, A.A., "Optimal Control of Connected and Automated Vehicles at Multiple Adjacent Intersections," IEEE Trans. on Control Systems Tech., 2021.
- [3] Chalaki, B., and Malikopoulos, A.A., "Time-Optimal Coordination for Connected and Automated Vehicles at Adjacent Intersections," IEEE Trans. Intell. Transp. Syst., 2021.
- [4] Kumaravel, S.D., Malikopoulos, A. A., and Ayyagari, R., "Optimal Coordination of Platoons of Connected and Automated Vehicles at Signal-Free Intersections," IEEE Trans. Intell. Veh., 2021.
- [5] Mahbub, A.M. I., Malikopoulos, A.A., and Zhao, L., "Decentralized Optimal Coordination of Connected and Automated Vehicles for Multiple Traffic Scenarios," Automatica, 117, 108958, 2020.
- [6] Malikopoulos, A. A., Hong, S., Park, B., Lee, J., and Ryu, S. "Optimal Control for Speed Harmonization of Automated Vehicles," IEEE Trans. Intell. Transp. Syst., 20, 7, 2405–2417, 2019.

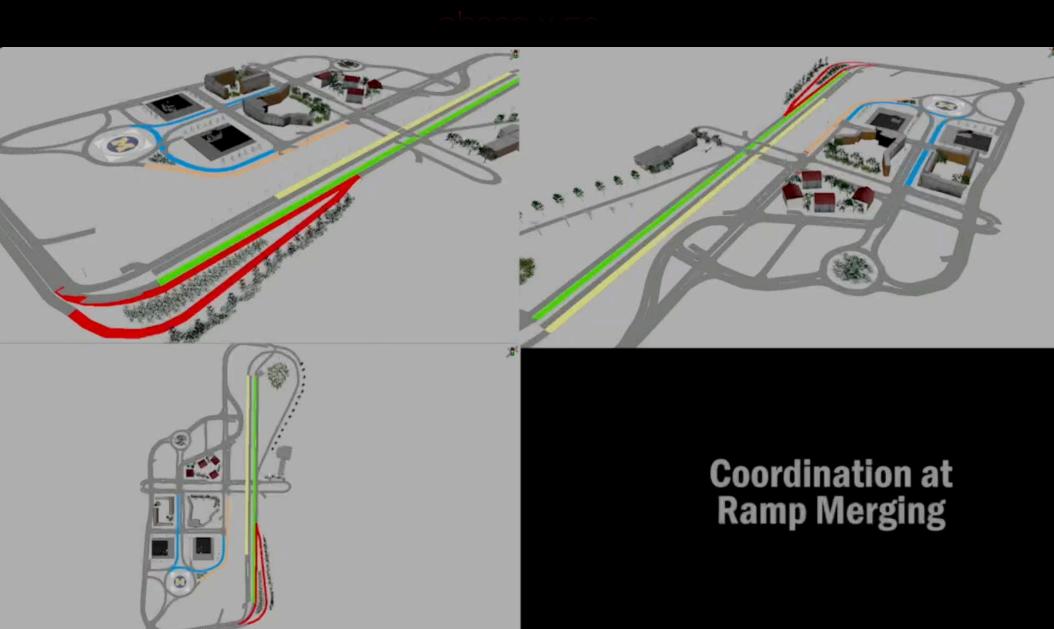
experimental results in IDS3C

coordination of CAVs

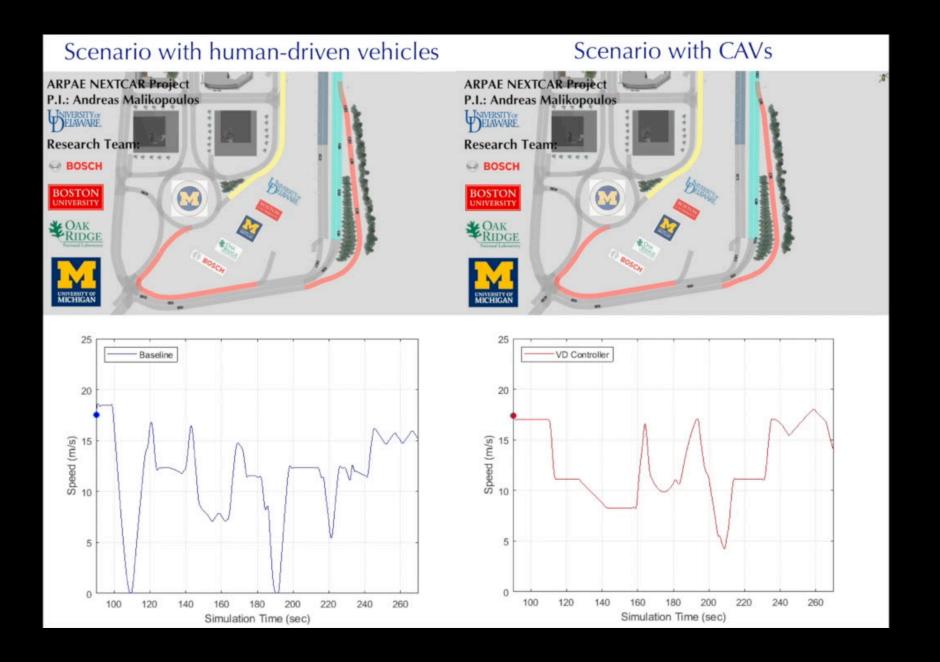
ARPAE NEXTCAR —field test in Mcity

field tests in Mcity

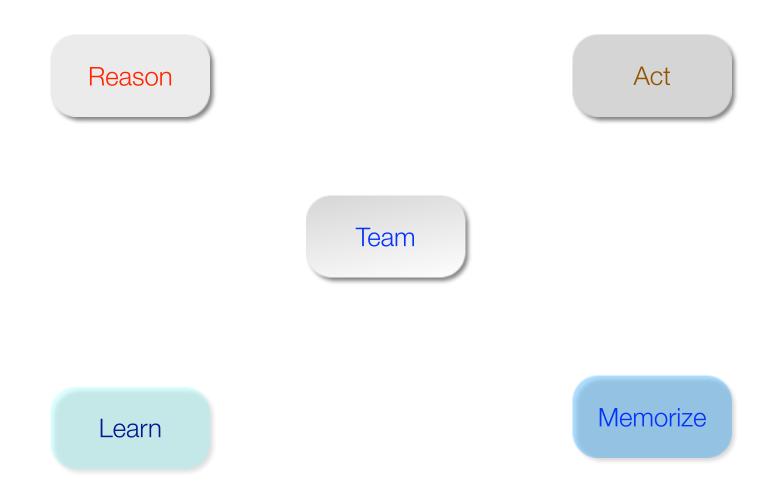
Speed x 20



vehicle in the loop in Bosch facilities



agentic ai: autonomous teams



agentic ai: autonomous teams

Team

- Team of $K \in \mathbb{N}$ members
- State: $X_t: (\Omega, \mathcal{F}) \to (X_t, \mathcal{X}_t)$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$
- Control: $U_t^{1:K} = (U_t^1, ..., U_t^K)$
- Disturbance: $W_t: (\Omega, \mathcal{F}) \to (X_t, W_t)$
- $X_{t+1} = f_{t+1}(X_t, U_t^{1:K}, W_t), t = 0, ..., T-1$
- For each team member k, $Y_t^k = h_t^k(X_t, Z_t^k)$, t = 0,..., T
- \circ Noise: $Z_t^k : (\Omega, \mathcal{F}) \to (X_t, \mathcal{Z}_t^k)$
- Information structure

optimal strategy

Reason

Theorem^[1]

Let

$$V_T(\pi_T)$$
: = $\mathbb{E}^g [C_T(X_T) \mid \Pi_T = \pi_T]$,

$$V_{t}(\pi_{t}): = \inf_{u_{t}^{1:K} \in U_{t}} \mathbb{E}^{g} \left[C_{t}(X_{t}, u_{t}) + V_{t+1}(\theta_{t}[\pi_{t}, Y_{t+1}^{1:K}, u_{t}^{1:K}]) \mid \Pi_{t} = \pi_{t}, U_{t}^{1:K} = u_{t}^{1:K} \right]$$

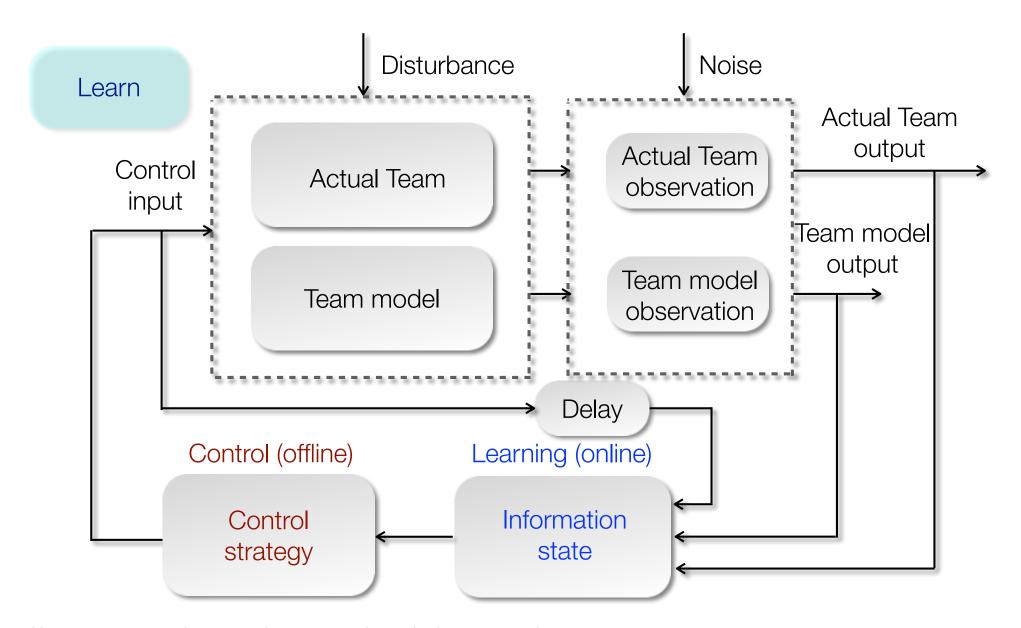
and let $g \in \mathcal{G}^s$ be a separated control strategy that achieves the infimum. Then, g is optimal.

optimal decisions

- Control strategy: $\mathbf{g} = \{\mathbf{g}_1, ..., \mathbf{g}_{T-1}\}$
- $\quad \text{Decision: } U_t^{1:K} = g_t(\Pi_t) = g_t \Big[\mathbb{P}(X_t \mid \Delta_t, \Lambda_t^{1:K}) \Big]$
- $\quad \text{Opdate: } \Pi_{t+1} = \theta_t \Big[\mathbb{P}(X_t \mid \Delta_t, \Lambda_t^{1:K}), Y_{t+1}^{1:K}, U_t^{1:K} \Big]$

Act

learning the information state^{[1]-[3]}



^[1] Malikopoulos, A.A., "Separation of Learning and Control for Cyber-Physical Systems," Automatica, 151, 110912, 2023.

^[2] Malikopoulos, A.A. "Combining Learning and Control in Linear Systems," European Journal of Control, Vol. 80, Part A, 101043, 2024.

^[3] Kounatidis, P., and Malikopoulos, A.A., "Combined Learning and Control: A New Paradigm for Optimal Control with Unknown Dynamics," arXiv:2510.00308, 2025.

storing information

Memorize

acknowledgements

 This work was supported by NSF under Grants CNS-2401007, CMMI-2348381, and IIS-2415478

