IEEE.org | IEEE Xplore Digital Library | IEEE Standards | IEEE Spectrum | More Sites
Call for Award Nominations
More Info
Thu, June 28, 2012
Nanometer length scale analogues of most traditional control elements, such as sensors, actuators, and feedback controllers, have been enabled by recent advancements in device manufacturing and fundamental materials research. However, combining these new control elements in classical systems frameworks remains elusive. Methods to address the new generation of systems issues particular to nanoscale systems is termed here as systems nanotechnology. This presentation discusses some promising control strategies and theories that have been developed to address the challenges that arise in systems nanotechnology. A selection of novel nanoscale devices are reviewed, selected by their potential for broad application in nanoscale systems. Many of these devices use single-walled carbon nanotubes, which demonstrate the diversity of potential applications for a single type of nanoscale material. All of the elements necessary for the design of advanced control systems are available, including sensors to rapidly assess the physical characteristics and use for estimation of the states of a system, actuators to affect the system states, and feedback controllers to utilize the state estimates to determine the signals to send to the actuators to satisfy control objectives. Specific examples are provided where the identification, estimation, and control of complex nanoscale systems have been demonstrated in experimental implementations or in high-fidelity simulations. Some control theory problems are also described that, if resolved, would facilitate further applications. Some recent developments are described for addressing a major challenge that must be resolved for commercial manufacturing, which is improving the integration of nanoscale devices.